Loading...
Search for: heating
0.014 seconds
Total 1786 records

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Rabiee, N ; Fatahi, Y ; Asadnia, M ; Daneshgar, H ; Kiani, M ; Ghadiri, A. M ; Atarod, M ; Mashhadzadeh, A. H ; Akhavan, O ; Bagherzadeh, M ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The... 

    Thermo- and pH-sensitive dendrosomes as bi-phase drug delivery systems

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 9, Issue 8 , 2013 , Pages 1203-1213 ; 15499634 (ISSN) Adeli, M ; Fard, A. K ; Abedi, F ; Chegeni, B. K ; Bani, F ; Sharif University of Technology
    2013
    Abstract
    Fully supramolecular dendrosomes (FSD) as bi-phase drug delivery systems are reported in this work. For preparation of FSD, amphiphilic linear-dendritic supramolecular systems (ALDSS) have been synthesized by host-guest interactions between hyperbranched polyglycerol having β-cyclodextrin core and bi-chain polycaprolactone (BPCL) with a fluorescine focal point. Self-assembly of ALDSS in aqueous solutions led to FSD. They were able to encapsulate paclitaxel with a high loading capacity. The dendrosome-based drug delivery systems were highly sensitive to pH and temperature. They were stable at 20-37. °C and pH7-8, but dissociated and released drug at temperatures lower than 20. °C or higher... 

    Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 126 , 2015 , Pages 313-321 ; 09277765 (ISSN) Akhavan, O ; Ghaderi, E ; Shirazian, S. A ; Sharif University of Technology
    Abstract
    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ~1. eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of... 

    Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 192 , 2020 Dehghan-Baniani, D ; Chen, Y ; Wang, D ; Bagheri, R ; Solouk, A ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under...