Loading...
Search for: heavy-oil-production
0.009 seconds

    Experimental investigation of heavy oil recovery by continuous/WAG injection of CO2 saturated with silica nanoparticles

    , Article International Journal of Oil, Gas and Coal Technology ; Volume 9, Issue 2 , 2015 , Pages 169-179 ; 17533317 (ISSN) Jafari, S ; Khezrnejad, A ; Shahrokhi, O ; Ghazanfari, M. H ; Vossoughi, M ; Sharif University of Technology
    Inderscience Enterprises Ltd  2015
    Abstract
    In this work, application of CO2 saturated with silica nanoparticles in continuous/water alternating gas (WAG) injection for heavy oil recovery was investigated which has been rarely attended in the available literature. Core displacement tests were conducted to monitor heavy oil recovery in both continuous and WAG injection schemes. It has been observed that for continuous nano-saturated CO2 injection, the oil recovery is higher than pure CO2 injection. This observation might be explained by alteration of rock wettability to a more water-wet condition. In WAG injection scheme, water breakthrough happened later in nano-saturated CO2 than pure CO2 injection. This delayed water breakthrough... 

    Characterization of viscous fingering during displacements of low tension natural surfactant in fractured multi-layered heavy oil systems

    , Article Chemical Engineering Research and Design ; Volume 96 , 2015 , Pages 23-34 ; 02638762 (ISSN) Arabloo, M ; Shokrollahi, A ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    Characterization of viscous fingering in low tension displacements especially for heavy oil surfactant pair in heterogeneous systems is neither straight forward nor well understood. In this work layered porous models containing fractures with different geometrical properties were used and the finger behavior during displacement of LTNS, as a new EOR agent, in heavy oil was quantified. Dynamic propagation of the fingers independent to the type of heterogeneity is well correlated with the dimensionless displacement time in a linearly form. And also, the rate of finger growth is nearly independent to the type of medium heterogeneity. When injection is scheduled through high permeable region in... 

    Macroscopic and microscopic investigation of alkaline-surfactant-polymer flooding in heavy oil recovery using five-spot micromodels: The effect of shale geometry and connatewater saturation

    , Article Journal of Porous Media ; Volume 18, Issue 8 , 2015 , Pages 745-762 ; 1091028X (ISSN) Mehranfar, A ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    Begell House Inc  2015
    Abstract
    Plenty of oil reservoirs contain discontinuous shale layers that act as flow barriers. Therefore, understanding their influences on reservoir performance, especially during enhanced oil recovery (EOR) processes, is of great importance. For this purpose, several experiments of water and alkaline-surfactant-polymer (ASP) flooding have been performed on a number of one-quarter five-spot micromodels that contain various configurations of shale layers to simulate shaly porous media. Several features, such as various shale geometrical characteristics and the presence of connate water saturation, were investigated at both macro- and micro-scales. The presence of shales resulted in earlier... 

    Solar generated steam injection in HAMCA, Venezuelan extra heavy oil reservoir; Simulation study for oil recovery performance, economical and environmental feasibilities

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; 2015 , Pages 1176-1202 ; 9781510811621 (ISBN) Mirzaie Yegane, M ; Ayatollahi, S ; Bashtani, F ; Romero, C ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Application of solar energy compared to conventional gas-burning boilers for steam generation in thermal Enhanced Oil Recovery processes is a newly attended technology, which brings significant benefits to the petroleum industry through environmental and economical aspects. This technique is especially designed for the regions in which gas-burning steam generation is not viable in large scale. The objective of this study is to investigate about viability of using solar energy to generate steam instead of using conventional steam generators in a Venezuelan extra heavy oil reservoir. Limited gas production policy of the Venezuelan government is the major challenge for utilizing gas steam... 

    Pore-level experimental investigation of ASP flooding to recover heavy oil in fractured five-spot micromodels

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; June , 2015 , Pages 1033-1058 ; 9781510811621 (ISBN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Although Alkaline-Surfactant-Polymer (ASP) flooding is proved to be efficient for heavy oil recovery, the displacement mechanisms/efficiency of this process should be discussed further in fractured porous media especially in typical waterflood geometrical configurations such as five-spot injection-production pattern. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels which were initially saturated with heavy oil. The ASP flooding tests were conducted at constant injection flow rates and different fracture geometrical characteristics were used. The ASP solutions constituted of five polymers, two surfactants and three alkaline types. The results... 

    Worm-like micelles:a new approach for heavy oil recovery from fractured systems

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 5 , 2015 , Pages 951-958 ; 00084034 (ISSN) Kianinejad, A ; Saidian, M ; Mavaddat, M ; Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    In this work, a new type of flooding system, "worm-like micelles", in enhanced heavy oil recovery (EOR) has been introduced. Application of these types of surfactants, because of their intriguing and surprising behaviour, is attractive for EOR studies. Fundamental understanding of the sweep efficiencies as well as displacement mechanisms of this flooding system in heterogeneous systems especially for heavy oils remains a topic of debate in the literature. Worm-like micellar surfactant solutions are made up of highly flexible cylindrical aggregates. Such micellar solutions display high surface activity and high viscoelasticity, making them attractive in practical applications for EOR. In this... 

    The applicability of expanding solvent steam-assisted gravity drainage (ES-SAGD) in fractured systems

    , Article Petroleum Science and Technology ; Volume 28, Issue 18 , Oct , 2010 , Pages 1906-1918 ; 10916466 (ISSN) Fatemi, S. M ; Sharif University of Technology
    2010
    Abstract
    The aim of this contribution is to evaluate the performance of an expanding solvent steam assisted gravity drainage (ES-SAGD) process in naturally fractured systems. Steam-assisted gravity drainage (SAGD) and ES-SAGD processes have been investigated in both conventional and fractured reservoir models and the effect of networked fractures on the recovery mechanism and performance of ES-SAGD has been investigated. Operational parameters such as steam quality, vertical distances between wells, and steam injection temperature have been also evaluated. Finally, to study the effect of a well's horizontal offset, a staggered ES-SAGD well configuration has been compared to a stacked ES-SAGD  

    An experimental and numerical investigation of solvent injection to heavy oil in fractured five-spot micromodels

    , Article Petroleum Science and Technology ; Volume 28, Issue 15 , 2010 , Pages 1567-1585 ; 10916466 (ISSN) Farzaneh, S. A ; Ghazanfari, M. H ; Kharrat, R ; Vossoughi, S ; Sharif University of Technology
    2010
    Abstract
    In this work a series of solvent injection experiments was conducted on horizontal glass micromodels at several fixed flow rate conditions. The micromodels were initially saturated with heavy crude oil. The produced oil as a function of injected volume of solvents was measured using image analysis of the continuously provided pictures. In order to investigate the macroscopic behavior of the process in different media, several fractured, with constant width, and nonfractured five-spot micromodels were designed and used. The measured data have also been used for verifying and developing a simulation model that was later used for sensitivity analysis of some parameters that affect oil recovery.... 

    Pore-level investigation of heavy oil recovery during water alternating solvent injection process

    , Article Transport in Porous Media ; Volume 83, Issue 3 , July , 2010 , Pages 653-666 ; 01693913 (ISSN) Dehghan, A. A ; Farzaneh, S. A ; Kharrat, R ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    2010
    Abstract
    This study concerns with the microscopic and macroscopic fluid distribution and flow behavior during water alternating solvent (WAS) injection process to heavy oil using micromodel generated from thin section of a real rock which has rarely attended in the available literature. In this study, a one-quarter five-spot glass micromodel was deployed to examine the effect of flow media topology on microscopic displacements as well as macroscopic efficiency of WAS process. The micromodel was initially saturated with the heavy oil, and then the hydrocarbon solvent and water were injected alternately into it. The observations confirmed that WAS injection scheme is an effective method for the... 

    Experimental study of solvent flooding to heavy oil in fractured five-spot micro-models: The role of fracture geometrical characteristics

    , Article Journal of Canadian Petroleum Technology ; Volume 49, Issue 3 , 2010 , Pages 36-43 ; 00219487 (ISSN) Farzaneh, S. A ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    2010
    Abstract
    The solvent-based process appears to be an increasingly feasible technology for the extraction of heavy oil reserves. However, there is a lack of fundamental understanding of how fracture geometrical characteristics control the oil recovery efficiency in this type of enhanced oil recovery (EOR) technique. In this work, a series of experiments were performed whereby the pure and mixed hydrocarbon solvents (HCS) displaced heavy oil in fractured five-spot glass micro-models. Successive images of the solvent injection process were recorded. The oil recovery factor, as a function of injected pore volume of solvents, was measured using image analysis of the provided pictures. It has been observed... 

    Visualization and quantification of asphaltinic-heavy oil displacement by co-solvents at different wettability conditions

    , Article Petroleum Science and Technology ; Volume 28, Issue 2 , 2010 , Pages 176-189 ; 10916466 (ISSN) Dehghan, A.A ; Kharrat, R ; Ghazanfari, M.H ; Sharif University of Technology
    2010
    Abstract
    Despite numerous experimental studies, there is a lack of fundamental understanding on how the chemical composition of a co-solvent at different wettability conditions might affect the pore-scale events and oil recovery efficiency in 5-spot models. In this study visualization of solvent injection experiments performed on a one-quarter five spot glass micromodel, which was initially saturated with the crude oil. One hydrocarbon solvent was considered as base, and four other groups of commercial chemicals, as well as their mixtures, were used as co-solvents. Microscopic and macroscopic displacement efficiency of solvent mixtures in both strongly water-wet and oil-wet media has been studied. It... 

    Kinetics of asphaltene aggregation phenomena in live oils

    , Article Journal of Molecular Liquids ; Volume 222 , 2016 , Pages 359-369 ; 01677322 (ISSN) Mohammadi, S ; Rashidi, F ; Ghazanfari, M. H ; Mousavi Dehghani, S. A ; Sharif University of Technology
    Elsevier 
    Abstract
    The thorough knowledge of the asphaltene aggregation phenomena and pressure/temperature related kinetics is helpful for accurate prediction/control of the asphaltene issues in all facets of petroleum production/processing. However, characterizing the asphaltene aggregation phenomena in live oils at high pressure-high temperature conditions is not well discussed in the available literature. In this work, the asphaltene aggregation phenomena as well as the kinetics of aggregation at different levels of pressure and temperature are investigated in light and heavy live oils using high pressure microscope. The results are presented and discussed in terms of asphaltene onset pressure, aggregates... 

    Synergy effects of ions, resin, and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines

    , Article Fuel ; Volume 165 , 2016 , Pages 75-85 ; 00162361 (ISSN) Lashkar Bolooki, M ; Riazi, M ; Ayatollahi, S ; Zeinol Abedini Hezave, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    It is well established that the heavy oil components including asphaltenes and resins play vital roles on the interfacial tension (IFT) of acidic crude oil (ACO) and aqueous solutions. Therefore, this experimental work is designed to investigate the possible synergism between salt ions, resin, and asphaltene on the IFT of ACO/low and high salinity brines containing MgCl2/NaCl and CaCl2. The results demonstrate that a complex ion of MgCl2 - resin component created in the solution could occupy the sites at the interface at high MgCl2 concentration. However, the results show that on the contrary, the molecular arrangement of MgCl2 and asphaltene at low and high MgCl2 concentration could be... 

    Thermogravimetric analysis and kinetic study of heavy oil pyrolysis

    , Article Petroleum Science and Technology ; Volume 34, Issue 10 , 2016 , Pages 911-914 ; 10916466 (ISSN) Motahari Nezhad, M ; Hami, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    ABSTRACT: Pyrolysis, so-called devolatilization, is one of the first steps of all thermochemical processes occurring in an inert atmosphere. The authors discuss the main kinetic features of heavy oil pyrolysis, on the basis of the data derived m from a TGA analysis and by using a kinetic model. The samples were heated over a range of temperature from 400 K to 430°C at various heating rates between 10 and 80°C/min. Experimental results showed that the effect of time is considerable in the case of tar conversion, compared to char and gases  

    Fractal analysis of asphaltene aggregation phenomena in live oils at elevated pressure and temperature

    , Article Particulate Science and Technology ; 2016 , Pages 1-9 ; 02726351 (ISSN) Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    In this work, high-pressure microscopy technique was used to measure the size and fractal dimension of asphaltene aggregates formed in different live oil samples at elevated pressures and temperatures. It was found that the asphaltene aggregates in live oil samples are irregular fractal-like structures with pressure−temperature-dependent fractal dimensions. By monitoring the variation of the fractal dimension and size of the asphaltene aggregates with pressure and temperature, the mechanisms responsible for asphaltene aggregation process at elevated pressures and temperatures can be well predicted. The range of fractal dimension of asphaltene aggregates in live oils is similar to that... 

    Heavy oil recovery using ASP flooding: A pore-level experimental study in fractured five-spot micromodels

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 4 , 2016 , Pages 779-791 ; 00084034 (ISSN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Wiley-Liss Inc  2016
    Abstract
    Although alkaline-surfactant-polymer (ASP) flooding has proven efficient for heavy oil recovery, the displacement mechanisms and efficiency of this process should be discussed further in fractured porous media. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels with a typical waterflood geometrical configuration, i.e. five-spot injection-production pattern. The ASP flooding tests were conducted at constant injection flow rates but different fracture geometrical characteristics. The ASP solutions consisted of five polymers, two surfactants, and three alkaline types. It was found that using synthetic polymers, especially hydrolyzed polyacrylamide... 

    Investigating the effect of co-solvents on heavy oil recovery in different pore geometries using five-spot micromodels

    , Article 15th European Symposium on Improved Oil Recovery 2009, 27 April 2009 through 29 April 2009, Paris ; 2009 , Pages 669-682 ; 9781622768912 (ISBN) Dehghan, A. A ; Kharrat, R ; Ghazanfari, M. H ; Vossoughi, S ; Sharif University of Technology
    Abstract
    The main issue in heavy oils enhanced recovery methods is to reduce their viscosity in order to get a better mobility. This is commonly obtained by blending the oil with light hydrocarbons. Co-solvents are good candidates to improve the hydrocarbon recovery efficiency especially in miscible processes. However, the effect of co-solvents on miscible flooding of heavy oil reservoirs at different pore geometries is not well understood. In this work different one-quarter five-spot network patterns along with those generated from reservoir rocks' thin sections were etches on glass surfaces. The models that had been initially saturated with the heavy crude oil were used to perform a series of... 

    A new semi-analytical modeling of steam-assisted gravity drainage in heavy oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 69, Issue 3-4 , 2009 , Pages 261-270 ; 09204105 (ISSN) Alali, N ; Pishvaie, M. R ; Jabbari, H ; Sharif University of Technology
    Abstract
    Thermal recovery by steam injection has proven to be an effective means of recovering heavy oil. Forecasts of reservoir response to the application of steam are necessary before starting a steam drive project. Thermal numerical models are available to provide forecasts. However, these models are expensive and consume a great deal of computer time. An alternative to numerical modeling is to use a semi-analytical model. The objective of the current study was to investigate thermal applications of horizontal wells for displacement and gravity drainage processes using analytical modeling as well as reservoir simulation. The main novelties presented in the paper are: a) the transient temperature... 

    The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: A case study

    , Article Journal of Dispersion Science and Technology ; 2017 , Pages 1-13 ; 01932691 (ISSN) Maaref, S ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Water-in-oil emulsion usually forms during waterflooding in some heavy oil reservoirs. The composition and salinity of the injected water critically affect the w/o emulsion droplet size distribution, which control the emulsion stability and emulsion flow in porous media. The aim of the present work is to assess the effect of different sea water salinities on w/o emulsion stability through microscopic imaging. Therefore, w/o emulsions were prepared with different sea water samples, which were synthesized to resemble Persian Gulf, Mediterranean, Red Sea, and North Sea water samples. The results showed that log-normal distribution function predicts very well the experimental data to track the... 

    Feasibility study on application of the recent enhanced heavy oil recovery methods (VAPEX, SAGD, CAGD and THAI) in an iranian heavy oil reservoir

    , Article Petroleum Science and Technology ; Volume 35, Issue 21 , 2017 , Pages 2059-2065 ; 10916466 (ISSN) Heidary, S ; Dehghan, A. A ; Mahdavi, S ; Sharif University of Technology
    Abstract
    Enhanced oil recovery (EOR) methods assisted by gravity drainage mechanism and application of sophisticated horizontal wells bring new hope for heavy oil extraction. Variety of thermal and non-thermal EOR techniques inject an external source of energy and materials such as steam, solvent vapor, or gas through a horizontal well at the top of the reservoir to reduce in-situ heavy oil viscosity. So, the diluted oil becomes mobile and flows downwards by gravity drainage to a horizontal producer located at the bottom of the reservoir. In this paper, a sector model of an Iranian fractured carbonate heavy oil reservoir was provided to simulate and evaluate capability of some EOR techniques such as...