Loading...
Search for: hierarchical-structures
0.009 seconds
Total 35 records

    Swing up and arm trajectory tracking of the furuta pendulum with sliding mode control

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 346-351 ; 9781538657034 (ISBN) Karamin Manesh, M. J ; Nikzad Goltapeh, A ; Sharif University of Technology
    Abstract
    In this paper, the swing-up problem of the Furuta pendulum has been solved by introducing a new combined method based on the frequency response, and the sliding mode method. Furthermore, a trajectory tracking controller has been introduced and applied to the Furuta pendulum; which the pendulum remained regulated at the upward position, while the arm tracks a desired time-varying trajectory. The hierarchical sliding mode control (HSMC) approach has been employed to achieve the mentioned goals. The Furuta system is made up of two subsystems. Based on this physical structure, the hierarchical structure of the sliding surfaces is designed as follows: first, the sliding surface of each subsystem... 

    A graph-theoretic approach toward autonomous skill acquisition in reinforcement learning

    , Article Evolving Systems ; Volume 9, Issue 3 , 2018 , Pages 227-244 ; 18686478 (ISSN) Kazemitabar, S. J ; Taghizadeh, N ; Beigy, H ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Hierarchical reinforcement learning facilitates learning in large and complex domains by exploiting subtasks and creating hierarchical structures using these subtasks. Subtasks are usually defined through finding subgoals of the problem. Providing mechanisms for autonomous subgoal discovery and skill acquisition is a challenging issue in reinforcement learning. Among the proposed algorithms, a few of them are successful both in performance and also efficiency in terms of the running time of the algorithm. In this paper, we study four methods for subgoal discovery which are based on graph partitioning. The idea behind the methods proposed in this paper is that if we partition the transition... 

    A lightweight hierarchical authentication scheme for internet of things

    , Article Journal of Ambient Intelligence and Humanized Computing ; 2018 , Pages 1-13 ; 18685137 (ISSN) Akbarzadeh, A ; Bayat, M ; Zahednejad, B ; Payandeh, A ; Aref, M. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The Internet of Things (IoT) technology enables numerous things with different processing power and storage capacity to communicate and share data with each other. Considering the constrained devices of the IoT network in terms of processing and storage, designing a lightweight authentication scheme is quite important. So in this paper, we propose a lightweight authentication scheme based on Chebyshev Chaotic Maps. In the proposed scheme we apply a hierarchical structure to define different access controls for various entities. We then provide a formal analysis via the BAN logic to show the security of our scheme. Moreover, we compare our proposed scheme with previous ones in terms of... 

    Automatic discovery of subgoals in reinforcement learning using strongly connected components

    , Article 15th International Conference on Neuro-Information Processing, ICONIP 2008, Auckland, 25 November 2008 through 28 November 2008 ; Volume 5506 LNCS, Issue PART 1 , 2009 , Pages 829-834 ; 03029743 (ISSN); 3642024890 (ISBN); 9783642024894 (ISBN) Kazemitabar, J ; Beigy, H ; Asia Pacific Neural Network Assembly (APNNA); International Neural Network Society (INNS); IEEE Computational Intelligence Society; Japanese Neural Network Society (JNNS); European Neural Network Society (ENNS) ; Sharif University of Technology
    2009
    Abstract
    The hierarchical structure of real-world problems has resulted in a focus on hierarchical frameworks in the reinforcement learning paradigm. Preparing mechanisms for automatic discovery of macro-actions has mainly concentrated on subgoal discovery methods. Among the proposed algorithms, those based on graph partitioning have achieved precise results. However, few methods have been shown to be successful both in performance and also efficiency in terms of time complexity of the algorithm. In this paper, we present a SCC-based subgoal discovery algorithm; a graph theoretic approach for automatic detection of subgoals in linear time. Meanwhile a parameter tuning method is proposed to find the... 

    Autonomous unmanned helicopter landing system design for safe touchdown on 6DOF moving platform

    , Article 5th International Conference on Autonomic and Autonomous Systems, ICAS 2009, Valencia, 20 April 2009 through 25 April 2009 ; 2009 , Pages 245-250 ; 9780769535845 (ISBN) Esmailifar, S. M ; Saghafi, F ; Sharif University of Technology
    2009
    Abstract
    In this research, an adaptive control system is designed for a safe touchdown of an unmanned helicopter during its landing phase on a 6DOF moving platform. In this paper the landing phase is divided into the approach and touchdown stages. In the first stage, the helicopter tries to attenuate the initial position and direction errors and in the next stage, the platform's attitude is tracked for a safe touchdown. The hierarchical structure of the proposed control system includes supervisory and tracking levels. The supervisory level recognizes the landing stage and the tracking level controls and compensates the errors based on SDRE (State Dependent Riccati Equation) method. The robustness and... 

    Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks

    , Article Micromachines ; Volume 10, Issue 10 , 2019 ; 2072666X (ISSN) Seyedmahmoud, R ; Çelebi Saltik, B ; Barros, N ; Nasiri, R ; Banton, E ; Shamloo, A ; Ashammakhi, N ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Skeletal muscle tissue engineering aims to fabricate tissue constructs to replace or restore diseased or injured skeletal muscle tissues in the body. Several biomaterials and microscale technologies have been used in muscle tissue engineering. However, it is still challenging to mimic the function and structure of the native muscle tissues. Three-dimensional (3D) bioprinting is a powerful tool to mimic the hierarchical structure of native tissues. Here, 3D bioprinting was used to fabricate tissue constructs using gelatin methacryloyl (GelMA)-alginate bioinks. Mechanical and rheological properties of GelMA-alginate hydrogels were characterized. C2C12 myoblasts at the density 8 × 106 cells/mL... 

    A lightweight hierarchical authentication scheme for internet of things

    , Article Journal of Ambient Intelligence and Humanized Computing ; Volume 10, Issue 7 , 2019 , Pages 2607-2619 ; 18685137 (ISSN) Akbarzadeh, A ; Bayat, M ; Zahednejad, B ; Payandeh, A ; Aref, M. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The Internet of Things (IoT) technology enables numerous things with different processing power and storage capacity to communicate and share data with each other. Considering the constrained devices of the IoT network in terms of processing and storage, designing a lightweight authentication scheme is quite important. So in this paper, we propose a lightweight authentication scheme based on Chebyshev Chaotic Maps. In the proposed scheme we apply a hierarchical structure to define different access controls for various entities. We then provide a formal analysis via the BAN logic to show the security of our scheme. Moreover, we compare our proposed scheme with previous ones in terms of... 

    A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water

    , Article Surface and Coatings Technology ; Volume 394 , 2020 Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A surface to separate oil–water mixtures is a global concern and highly needed particularly in oil industries. The present study was conducted to create a novel superhydrophilic/superoleophobic nanocomposite coating on the stainless-steel mesh for the aim of oil/water separation. Different hydrophilic resins along with PFOA as oleophobic agent with 15 flours in its chemical structure and various oxide nanoparticles containing SiO2 and TiO2 at different concentrations were studied to achieve superhydrophilic/superoleophobic surface. The fabricated nanocomposites were fully characterized via field-emission scanning microscopy (FESEM), atomic force microscopy (AFM) and Fourier-transform... 

    Preparation and characterization of superhydrophobic and highly oleophobic FEVE-SiO2 nanocomposite coatings

    , Article Progress in Organic Coatings ; Volume 138 , 2020 Ghadimi, M.R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, an excellent superhydrophobic and highly oleophobic nanocomposite coating composed of fluoroethylene-vinyl ether (FEVE) resin as a matrix for modified SiO2 nanoparticles was synthesized on a stainless-steel wire mesh substrate via a facile sol-gel method. The surface morphology, microstructure, composition, and roughness of the coatings were investigated by field emission scanning electron microscopy (FESEM) equipped with energy-dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The most efficient coating with superhydrophobicity and high oleophobicity feature indicates the water and oil repellency with contact angles (CAs) of 152° and 141°, respectively, with the high... 

    Influence of new superhydrophobic micro-structures on delaying ice formation

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 595 , 2020 Kamali Moghadam, R ; Taeibi Rahni, M ; Javadi, K ; Davoudian, S. H ; Miller, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drop motion on different types of new proposed micro-structure surfaces has been numerically investigated to find the optimum structure in view point of ice formation delaying. The droplet automatically moves on the inclined surfaces due to gravity forces. To validate the numerical algorithm, three different bench mark problems have been considered. The results indicate that the present algorithm is trustable for the presented numerical simulations. Then the validated numerical approach has been used to simulate droplet motion on nine proposed superhydrophobic surfaces in the same conditions. Comparison the drop motion on different micro-structure surfaces at different time indicate that... 

    Searching for galactic hidden gas through interstellar scintillation: the OSER project

    , Article Proceedings of Science, 18 August 2008 through 22 August 2008, Stockholm ; 2008 ; 18248039 (ISSN) Moniez, M ; Ansari, R ; Habibi, F ; Sharif University of Technology
    2008
    Abstract
    Considering the results of baryonic compact massive objects searches through microlensing [1], cool molecular hydrogen (H2 - He) clouds should now be seriously considered as a possible major component of the Galactic hidden matter. It has been suggested that a hierarchical structure of cold H 2 could fill the Galactic thick disk [8] or halo [3], providing a solution for the Galactic hidden matter problem. This gas should form transparent "clumpuscules" of ∼ 10 AU size, with a column density of 1024-25cm-2, and a surface filling factor smaller than 1%. The OSER project (Optical Scintillation by Extraterrestrial Refractors) is proposed to search for scintillation of extra-galactic sources... 

    Graphic: Graph-based hierarchical clustering for single-molecule localization microscopy

    , Article 18th IEEE International Symposium on Biomedical Imaging, ISBI 2021, 13 April 2021 through 16 April 2021 ; Volume 2021-April , 2021 , Pages 1892-1896 ; 19457928 (ISSN); 9781665412469 (ISBN) Pourya, M ; Aziznejad, S ; Unser, M ; Sage, D ; Sharif University of Technology
    IEEE Computer Society  2021
    Abstract
    We propose a novel method for the clustering of point-cloud data that originate from single-molecule localization microscopy (SMLM). Our scheme has the ability to infer a hierarchical structure from the data. It takes a particular relevance when quantitatively analyzing the biological particles of interest at different scales. It assumes a prior neither on the shape of particles nor on the background noise. Our multiscale clustering pipeline is built upon graph theory. At each scale, we first construct a weighted graph that represents the SMLM data. Next, we find clusters using spectral clustering. We then use the output of this clustering algorithm to build the graph in the next scale; in... 

    Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model

    , Article Annals of Biomedical Engineering ; Volume 49, Issue 9 , 2021 , Pages 2159-2169 ; 00906964 (ISSN) Sadoughi, A ; Shamsollahi, M. B ; Fatemizadeh, E ; Beuchée, A ; Hernández, A. I ; Montazeri Ghahjaverestan, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Apnea-bradycardia (AB) is a common complication in prematurely born infants, which is associated with reduced survival and neurodevelopmental outcomes. Thus, early detection or predication of AB episodes is critical for initiating preventive interventions. To develop automatic real-time operating systems for early detection of AB, recent advances in signal processing can be employed. Hidden Markov Models (HMM) are probabilistic models with the ability of learning different dynamics of the real time-series such as clinical recordings. In this study, a hierarchy of HMMs named as layered HMM was presented to detect AB episodes from pre-processed single-channel Electrocardiography (ECG). For... 

    Highly concurrent latency-tolerant register files for GPUs

    , Article ACM Transactions on Computer Systems ; Volume 37, Issue 1-4 , 2021 ; 07342071 (ISSN) Sadrosadati, M ; Mirhosseini, A ; Hajiabadi, A ; Ehsani, S. B ; Falahati, H ; Sarbazi Azad, H ; Drumond, M ; Falsafi, B ; Ausavarungnirun, R ; Mutlu, O ; Sharif University of Technology
    Association for Computing Machinery  2021
    Abstract
    Graphics Processing Units (GPUs) employ large register files to accommodate all active threads and accelerate context switching. Unfortunately, register files are a scalability bottleneck for future GPUs due to long access latency, high power consumption, and large silicon area provisioning. Prior work proposes hierarchical register file to reduce the register file power consumption by caching registers in a smaller register file cache. Unfortunately, this approach does not improve register access latency due to the low hit rate in the register file cache. In this article, we propose the Latency-Tolerant Register File (LTRF) architecture to achieve low latency in a two-level hierarchical... 

    Photoelectrochemical water-splitting using CuO-Based electrodes for hydrogen production: a review

    , Article Advanced Materials ; Volume 33, Issue 33 , 2021 ; 09359648 (ISSN) Siavash Moakhar, R ; Hosseini Hosseinabad, S. M ; Masudy Panah, S ; Seza, A ; Jalali, M ; Fallah Arani, H ; Dabir, F ; Gholipour, S ; Abdi, Y ; Bagheri Hariri, M ; Riahi Noori, N ; Lim, Y. F ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods,...