Loading...
Search for: higher-order
0.006 seconds
Total 92 records

    Variational bounds and overall shear modulus of nano-composites with interfacial damage in anti-plane couple stress elasticity

    , Article International Journal of Damage Mechanics ; Volume 29, Issue 2 , 2020 , Pages 246-271 Mohammadi Shodja, H ; Hashemian, B ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    It is well known that classical continuum theory has certain deficiencies in capturing the size effects and predicting the nanoscopic behavior of materials in the vicinity of nano-inhomogeneities and nano-defects with reasonable accuracy. Couple stress theory which is associated with an internal length scale for the medium is one of the higher order continuum theories capable of overcoming such difficulties. In this work, the problem of a nano-size fiber embedded in an unbounded isotropic elastic body for three different types of interface conditions: perfect, imperfect (partially damaged), and pure sliding (completely damaged) subjected to remote anti-plane loading is examined in this... 

    Vibration analysis of spinning cylindrical shell made of functionally graded material using higher order shear deformation theory

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Kargarnovin, M. H ; Mehrparvar, M ; Najafizadeh, A ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    In this paper the vibration of a spinning cylindrical shell made of functional graded material (FGM) made is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. In the next step by utilizing energy method and Hamilton's principle governing deferential equation of spinning cylindrical shell is obtained. By making use of the principle of minimum potential energy, the characteristic equation of natural frequencies is derived. After verification of the results, the effect of changing different parameters such as material grade, L/R, h/R, and spinning velocity on the natural frequency are... 

    Analysis of waveguide filters with dielectric resonators using multimode contour integral method

    , Article Asia-Pacific Microwave Conference, APMC 2007, Bangkok, 11 December 2007 through 14 December 2007 ; 2007 ; 1424407494 (ISBN); 9781424407491 (ISBN) Hashemit, A ; Banail, A ; Sharif University of Technology
    2007
    Abstract
    The contour integral (CI) method is developed to analyze H-plane waveguide circuits filled with inhomogeneous dielectric such as circuits including full height dielectric posts. In order to reduce the computational costs, the multimode CI method, which considers the effect of higher order TEnO modes, is introduced and we present a hybrid method based on multimode CI and mode matching (MM) techniques. The accuracy of method is validated by comparison of results with those reported in literatures  

    Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 4127-4143 ; 01770667 (ISSN) Wu, J ; Habibi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In the presented research, vibrational, and amplitude behaviors of a sandwich spinning disk made of two laminated layers and graphene nanoplatelets reinforced composite (GPLRC) core has been reported. The Coriolis and centrifugal impacts have been taken into account due to its rotational feature. The stresses and strains have been obtained through the high-order shear deformable theory (HSDT). The structure’s boundary conditions (BCs) are determined using laminated rotating disk’s governing equations employing energy methods and ultimately have been solved via a computational approach called generalized differential quadrature method (GDQM). The rotational disk’s vibrations with different... 

    Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 4 , 2022 , Pages 1137-1160 ; 15397734 (ISSN) Cheshmeh, E ; Karbon, M ; Eyvazian, A ; Jung, D. W ; Habibi, M ; Safarpour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In the present study, based on 12-unknown higher order shear deformation theory (HSDT), buckling and vibration analysis of FG-CNTRC rectangular plate are investigated for various types of temperature distribution and boundary conditions. Implementing Hamilton’s principle, the equations of motion are derived and solved by adopting the Navier solution for the simply supported boundary conditions and DQM method for other boundary conditions. Validation is carried out by comparing the numerical results with those obtained in the open literature. Also, a detailed parametric analysis is carried out to illuminate the influence of different system parameters such as CNT distributions, CNT volume... 

    Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine

    , Article Mathematics and Computers in Simulation ; Volume 192 , 2022 , Pages 50-69 ; 03784754 (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, the drivetrain identification problem of a horizontal axis gear-driven wind turbine has been considered. The identification problem leads to a precise model of the drivetrain of the wind turbines which plays a key role in the production and transmission of electrical energy. This process consists of two stages: First, offline identification which needs the input–output data from the drivetrain system. These data are obtained from the FAST code. FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a valid aeroelastic code in the simulation aeroelastic field of offshore and onshore wind turbines. In region 2 (wind velocity is between the cut-in and rated velocities), the... 

    A spectral theory formulation for elastostatics by means of tensor spherical harmonics

    , Article Journal of Elasticity ; Volume 111, Issue 1 , 2013 , Pages 67-89 ; 03743535 (ISSN) Khorshidi, A ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Consider a set of (N+1)-phase concentric spherical ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic and is functionally graded (FG) in the radial direction. Determination of the elastic fields when the outermost spherical surface is subjected to a nonuniform loading and the constituent phases are subjected to some prescribed nonuniform body force and eigenstrain fields is of interest. When the outermost layer is an unbounded medium with zero eigenstrain and body force fields, then an N-phase multi-inhomogeneous inclusion problem is realized. Based on higher-order spherical harmonics, presenting a three-dimensional... 

    Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials

    , Article Strength of Materials ; Volume 47, Issue 5 , September , 2015 , Pages 740-754 ; 00392316 (ISSN) Haeri, H ; Khaloo, A ; Marji, M. F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Rocks and rock-like materials frequently fail under compression due to the initiation, propagation and coalescence of the pre-existing microcracks. The mechanism of microcrack coalescence process in rock-like materials is experimentally and numerically investigated. The experimental study involves some uniaxial compression tests on rock-like specimens specially prepared from portland pozzolana cement, mica sheets and water. The microcrack coalescence is studied by scanning electron microscopy on some of the prepared thin specimens. It is assumed that the mica sheets play the role of microcracks within the specimens. Some analytical and numerical studies are also carried out to simulate the... 

    Theoretical description of the flexural vibration of dagger shaped atomic force microscope cantilevers

    , Article Journal of Scanning Probe Microscopy ; Volume 4, Issue 2 , 2009 , Pages 78-90 ; 15577937 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    Abstract
    The resonant frequency of flexural vibration for a dagger shaped atomic force microscope (AFM) cantilever has been investigated using the Timoshenko beam theory. Generally, three distinct regions are considered for dagger shaped cantilevers, one region with constant cross section and height and two double tapered regions. In this paper, the effects of the contact position, contact stiffness, the height of the tip, thickness of the beam, the height and breadth taper ratios of cantilever and the angle between the cantilever and the sample surface based on Timoshenko beam theory on the non-dimensional frequency and sensitivity to the contact stiffness have been studied. The differential... 

    Extraction and automatic grouping of joint and individual sources in multi-subject fMRI data using higher order cumulants

    , Article IEEE Journal of Biomedical and Health Informatics ; 24 May , 2018 ; 21682194 (ISSN) Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The joint analysis of multiple datasets to extract their interdependency information has wide applications in biomedical and health informatics. In this paper, we propose an algorithm to extract joint and individual sources of multi-subject datasets by using a deflation based procedure, which is referred to as joint/individual thin independent component analysis (JI-ThICA). The proposed algorithm is based on two cost functions utilizing higher order cumulants to extract joint and individual sources. Joint sources are discriminated by fusing signals of all subjects, whereas individual sources are extracted separately for each subject. Furthermore, JI-ThICA algorithm estimates the number of... 

    Extraction and automatic grouping of joint and individual sources in multisubject fMRI data using higher order cumulants

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 23, Issue 2 , 2019 , Pages 744-757 ; 21682194 (ISSN) Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The joint analysis of multiple data sets to extract their interdependency information has wide applications in biomedical and health informatics. In this paper, we propose an algorithm to extract joint and individual sources of multisubject data sets by using a deflation-based procedure, which is referred to as joint/individual thin independent component analysis (JI-ThICA). The proposed algorithm is based on two cost functions utilizing higher order cumulants to extract joint and individual sources. Joint sources are discriminated by fusing signals of all subjects, whereas individual sources are extracted separately for each subject. Furthermore, JI-ThICA algorithm estimates the number of... 

    MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments

    , Article PLoS Computational Biology ; Volume 18, Issue 6 , 2022 ; 1553734X (ISSN) Alinejad Rokny, H ; Modegh, R. G ; Rabiee, H. R ; Sarbandi, E. R ; Rezaie, N ; Tam, K. T ; Forrest, A. R. R ; Sharif University of Technology
    Public Library of Science  2022
    Abstract
    Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction frequencies between every position in the genome and every other position. Biologically functional interactions are expected to occur more frequently than transient background and artefactual interactions. To identify biologically relevant interactions, several background models that take biases such as distance, GC content and mappability into account have been proposed. Here we introduce MaxHiC, a background correction tool that deals with these complex biases and robustly...