Loading...
Search for: histology
0.005 seconds
Total 45 records

    Developmental model of an automatic production of the human bronchial tree based on L-system

    , Article Computer Methods and Programs in Biomedicine ; Volume 132 , 2016 , Pages 1-10 ; 01692607 (ISSN) Davoodi, A ; Boozarjomehry, R. B ; Sharif University of Technology
    Elsevier Ireland Ltd  2016
    Abstract
    Background and objective: The human lungs exchange air with the external environment via the conducting airways. The application of an anatomically accurate model of the conducting airways can be helpful for simulating gas exchange and fluid distribution throughout the bronchial tree in the lung. Methods: In the current study, Lindenmayer system (L-system) has been formulated to generate the bronchial tree structure in a human lung. It has been considered that the structure of the bronchial tree is divided into two main segments: 1) The central airways (from the trachea to segmental bronchi) and 2) the dichotomous structure (from segmental bronchi to terminal bronchioles). Two sets of... 

    Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model

    , Article International Journal of Engineering Science ; Volume 121 , 2017 , Pages 91-107 ; 00207225 (ISSN) Fallah, A ; Ahmadian, M. T ; Mohammadi Aghdam, M ; Sharif University of Technology
    Abstract
    In this paper, a micromechanical study on rate-dependent behavior of connective tissues is performed. To this end, a hyper viscoelastic constitutive model consisting a hyperelastic part for modeling equilibrium response of tissues and a viscous part using a hereditary integral is proposed to capture the time-dependent behavior of the tissues. With regard to the hierarchical structure of the tissue, strain energy function are developed for modeling elastic response of the tissue constituents i.e. collagen fibers and ground matrix. The rate-dependency is incorporated into the model using a viscous element with rate-dependent relaxation time. The proposed constitutive model is implemented into... 

    A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues

    , Article Journal of Medical Engineering and Technology ; Volume 41, Issue 5 , 2017 , Pages 339-345 ; 03091902 (ISSN) Nazarynasab, D ; Farahmand, F ; Mirbagheri, A ; Afshari, E ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of... 

    Apoptotic and anti-apoptotic genes transcripts patterns of graphene in mice

    , Article Materials Science and Engineering C ; Volume 71 , 2017 , Pages 460-464 ; 09284931 (ISSN) Ahmadian, H ; Hashemi, E ; Akhavan, O ; Shamsara, M ; Hashemi, M ; Farmany, A ; Daliri Joupari, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Recent studies showed that a large amount of graphene oxide accumulated in kidney and liver when it injected intravenously. Evaluation of lethal and apoptosis gene expression in these tissues, which are under stress is very important. In this paper the in vivo dose-dependent effects of graphene oxide and reduced graphene oxide nanoplatelets on kidney and liver of mice were studied. Balb/C mice were treated by 20 mg/kg body weight of nanoplatelets. Molecular biology analysis showed that graphene nanoplatelets injected intravenously lead to overexpression of BAX gene in both kidney and liver tissues (P ≥ 0.01). In addition these nanoparticles significantly increase BCL2 gene expression in both... 

    Hierarchical Enhancement of Optical Coherence Tomography Images

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Turani, Z ; Fatemizadeh, E ; Nasiri Avanaki, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Optical coherence tomography (OCT) is a noninvasive imaging modality that provides cross-sectional images from microstructures of tissues. This optical imaging system works based on Michelson interferometry principle and has intermediate resolution and penetration depth which makes it appropriate for imaging thin tissues such as skin and eye. OCT images suffer from three main artifacts that make images difficult to be analyzed. The first one is small grainy structures called speckle which degrade image quality and decreases axial and lateral resolution. The second one is light intensity attenuation which is a function of depth. It happens because of absorbing and scattering nature of tissue... 

    Adaptive 2D-path optimization of steerable bevel-tip needles in uncertain model of brain tissue

    , Article 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, Los Angeles, CA, 31 March 2009 through 2 April 2009 ; Volume 5 , 2009 , Pages 254-260 ; 9780769535074 (ISBN) Sadati, N ; Torabi, M ; Sharif University of Technology
    2009
    Abstract
    Although there are many works in which path planning of robots is studied, but path planning of the bevel-tip needles with highly flexible body is different and difficult due to unique properties of soft tissues. Real soft tissues are nonhomogeneously elastic and uncertainly deformable and hence, during needle motions the planned path changes unknowingly. In this paper, a novel adaptive path planning of bevel-tip needles inside the uncertain brain tissue is presented. The proposed approach is based on minimization of a Lyapanov energy function used as the cost function which consists of 6 partial costs: path length, number of changes in bevel direction, tissue deformation, horizontal and... 

    The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide

    , Article Journal of Alloys and Compounds ; Volume 784 , 2019 , Pages 134-148 ; 09258388 (ISSN) Enayati, M ; Nemati, A ; Zarrabi, A ; Shokrgozar, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Recently, graphene oxide and its unconventional magnetism have attracted much interest due to their novel applications in spintronics, memory chips and theranostics. Owing to the excellent biocompatibility, cellular uptake, bio-conjugation possibilities, flexible chemical modification and characteristic broad-wavelength absorbance, graphene oxide and its derivatives have been utilized as contrast agents for various imaging modalities such as photoluminescence, photoacoustic or ultrasound. Despite their suitable applications in bioimaging and due to lack of magnetic moment, graphene oxide cannot confer magnetic resonance imaging contrast without incorporating the magnetic component. Such... 

    A reliable ensemble-based classification framework for glioma brain tumor segmentation

    , Article Signal, Image and Video Processing ; Volume 14, Issue 8 , 2020 , Pages 1591-1599 Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Glioma is one of the most frequent primary brain tumors in adults that arise from glial cells. Automatic and accurate segmentation of glioma is critical for detecting all parts of tumor and its surrounding tissues in cancer detection and surgical planning. In this paper, we present a reliable classification framework for detection and segmentation of abnormal tissues including brain glioma tumor portions such as edemas and tumor core. This framework learns weighted features extracted from the 3D cubic neighborhoods regarding to gray-level differences that indicate the spatial relationships among voxels. In addition to intensity values in each slice, we consider sets of three consecutive... 

    A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery

    , Article Medicine Meets Virtual Reality 16 - Parallel, Combinatorial, Convergent: NextMed by Design, MMVR 2008, Long Beach, CA, 30 January 2008 through 1 February 2008 ; Volume 132 , 2008 , Pages 23-25 ; 09269630 (ISSN); 9781586038229 (ISBN) Basafa, E ; Farahmand, F ; Vossoughi, G ; Sharif University of Technology
    IOS Press  2008
    Abstract
    An extension to the classical mass-spring model for more realistic simulation of soft tissues for surgery simulation was proposed. The conventional equations of mass-spring model were generalized for non-linear springs, and model parameters were tuned using experimental data. Results show that the proposed model is fast and interactive, and also demonstrate the typical nonlinear and visco-elastic behaviors of soft tissues well. © 2008 The authors. All rights reserved  

    Magnetic nanocomposites for biomedical applications

    , Article Advances in Colloid and Interface Science ; Volume 308 , 2022 ; 00018686 (ISSN) Naghdi, M ; Ghovvati, M ; Rabiee, N ; Ahmadi, S ; Abbariki, N ; Sojdeh, S ; Ojaghi, A ; Bagherzadeh, M ; Akhavan, O ; Sharifi, E ; Rabiee, M ; Saeb, M. R ; Bolouri, K ; Webster, T. J ; Zare, E. N ; Zarrabi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been... 

    Fullerene C60 nanoparticle attenuates pain and tumor necrosis factor-α protein expression in the hippocampus following diabetic neuropathy in rats

    , Article Physiology and Pharmacology (Iran) ; Volume 26, Issue 4 , 2022 , Pages 451-458 ; 24765236 (ISSN) Namdar, F ; Bahrami, F ; Bahari, Z ; Ghanbari, B ; Shahyad, S ; Mohammadi, M. T ; Sharif University of Technology
    Iranian Society of Physiology and Pharmacology  2022
    Abstract
    Introduction: Diabetic neuropathy is a common complication of diabetes mellitus. It is associated with nerve damage due to oxidative stress and high levels of pro-inflammatory mediators. In the present study, we examined the anti-nociceptive effects of Fullerene nanoparticle, as a potent anti-oxidant, during diabetic neuropathy. Methods: Diabetes mellitus induced through injection of streptozotocin (STZ) (40 mg/kg). Four groups were used in the study as follows: the control, control+fullerene, diabetes, and diabetes +fullerene groups. All four groups received sesame oil. Treatment rats received fullerene C60 (1mg/kg/day) for 9 weeks by intra-gastric gavage. Then, cold allodynia, histology,... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    Chitosan-gelatin sheets as scaffolds for muscle tissue engineering

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 43, Issue 2 , Nov , 2015 , Pages 124-132 ; 21691401 (ISSN) Hajiabbas, M ; Mashayekhan, S ; Nazaripouya, A ; Naji, M ; Hunkeler, D ; Rajabi Zeleti, S ; Sharifiaghdas, F ; Sharif University of Technology
    Informa Healthcare  2015
    Abstract
    Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate... 

    Micromechanics and constitutive modeling of connective soft tissues

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 60 , 2016 , Pages 157-176 ; 17516161 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical... 

    Intensity estimation of spontaneous facial action units based on their sparsity properties

    , Article IEEE Transactions on Cybernetics ; Volume 46, Issue 3 , 2016 , Pages 817-826 ; 21682267 (ISSN) Mohammadi, M. R ; Fatemizadeh, E ; Mahoor, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Automatic measurement of spontaneous facial action units (AUs) defined by the facial action coding system (FACS) is a challenging problem. The recent FACS user manual defines 33 AUs to describe different facial activities and expressions. In spontaneous facial expressions, a subset of AUs are often occurred or activated at a time. Given this fact that AUs occurred sparsely over time, we propose a novel method to detect the absence and presence of AUs and estimate their intensity levels via sparse representation (SR). We use the robust principal component analysis to decompose expression from facial identity and then estimate the intensity of multiple AUs jointly using a regression model... 

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    Abstract
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Review on different experimental techniques developed for recording force-deformation behaviour of soft tissues; with a view to surgery simulation applications

    , Article Journal of Medical Engineering and Technology ; Volume 41, Issue 4 , 2017 , Pages 257-274 ; 03091902 (ISSN) Afshari, E ; Rostami, M ; Farahmand, F ; Sharif University of Technology
    Abstract
    Different experimental techniques which have been developed to obtain data related to force-deformation behaviour of soft tissues play an important role in realistically simulating surgery processes as well as medical diagnoses and minimally invasive procedures. Indeed, an adequate quantitative description of soft-tissue-mechanical-behaviour requires high-quality experimental data to be obtained and analysed. In this review article we will first scan the motivations and basic technical issues on surgery simulation. Then, we will concentrate on different experimental techniques developed for recording force-deformation (stress-strain) behaviour of soft tissues with focussing on the in-vivo... 

    Micromechanical modeling of rate-dependent behavior of Connective tissues

    , Article Journal of Theoretical Biology ; Volume 416 , 2017 , Pages 119-128 ; 00225193 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Academic Press  2017
    Abstract
    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of... 

    An optimization based approach embedded in a fuzzy connectivity algorithm for airway tree segmentation

    , Article Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology", 20 August 2008 through 25 August 2008, Vancouver, BC ; 2008 , Pages 4011-4014 ; 9781424418152 (ISBN) Yousefi Rizi, F ; Ahmadian, A. R ; Fatemizadeh, E ; Alirezaie, J ; Sharif University of Technology
    2008
    Abstract
    The main problem with airway segmentation methods which significantly influences their accuracy is leakage into the extra-luminal regions due to thinness of the airway wall during the process of segmentation. This phenomenon potentially makes large regions of lungparenchyma to be wrongly identified as airways. A solution to this problem in the previous methods was based on leak detection followed by reducing leakage during the segmentation process. This has been dealt with adjusting the segmentation parameters and performing the re-segmentation process on the pre-segmented area. This makes the algorithm very exhaustive and more dependent on the user interaction. The method presented here is... 

    Amoxicillin-loaded multilayer pullulan-based nanofibers maintain long-term antibacterial properties with tunable release profile for topical skin delivery applications

    , Article International Journal of Biological Macromolecules ; Volume 215 , 2022 , Pages 413-423 ; 01418130 (ISSN) Ajalloueian, F ; Asgari, S ; Guerra, P. R ; Chamorro, C. I ; Ilchenco, O ; Piqueras, S ; Fossum, M ; Boisen, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Unique physiochemical and biological properties of nanofibers along with the choice of a wide variety of materials for both fabrication and tunable release patterns make nanofibers an ideal option for drug delivery. Loading antibacterial agents into nanofibers has attracted great deal of attention. Whilst there are several studies focusing on applying new generations of antibacterial materials, antibiotics are still the gold standard in clinical applications. Therefore, we aimed at introducing antibiotic-loaded nanofiber substrates with potential for topical skin delivery applications, reduced consumption of antibiotics and increased storage time. We applied Amoxicillin (AMX) as a model drug...