Loading...
Search for: hydrogen-peroxide
0.007 seconds

    Experimental Study on Biosensors for Detection of Biohazards with Nano-structured Metal Oxides Basis

    , M.Sc. Thesis Sharif University of Technology Dadfarmay, Sajad (Author) ; Mashayekhan, Shohreh (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    In this research, fabrication of a mediator free nano-biosensor for the detection of cyanide has been studied. This biosensor utilizes 75 nm diameter (nano) ZnO particles synthesized with sol- gel method for modification and immobilization of Horseradish peroxidase (HRP). Cyanide plays inhibitory role in decomposition of H2O2 while HRP plays catalyst role in this reaction. Cyanide inhibits enzyme activity thorough binding with enzyme active sites and result in decreasing electrical current in electrochemical decomposition of H2O2. Amperometery response of biosensor shows linear relation between inhibition percent and cyanide concentration in range of 3µM - 24µM with detection limit of 0.62µM... 

    Investigation and Optimization of Degradation Process of Contaminants of Chemical Industrial Wastewater Using Enhanced Nanophotocatalysts under Visible and Solar Light

    , Ph.D. Dissertation Sharif University of Technology Feilizadeh, Mehrzad (Author) ; Vossoughi, Manoochehr (Supervisor) ; Aalemzadeh, Iran (Supervisor)
    Abstract
    Photocatalytic degradation is one of the developing modern and effective methods for decontamination of hazardous pollutants of chemical industrial wastewater. This method has several advantages including the possibility of using free and sustainable energy of sun. However, it is still needed to active photocatalysts under solar light and also the enhancement and optimization of operating parameters, and consequently, these topics are selected as goals of the present thesis. Accordingly in this research, first, to obtain a photocatalyst that is highly efficient (especially under visible and solar light), multi-doping and polyethylene glycol (PEG) were used and for the first time,... 

    Experimental Investigation of a Monopropellant Thruster Using Hydrogen Peroxide

    , M.Sc. Thesis Sharif University of Technology Nikfar, Rouzbeh (Author) ; Farahani, Mohammad (Supervisor)
    Abstract
    Monopropellant thrusters are one of the most common types of propulsion systems that are used extensively in space applications. Especially thrusters with a capacity of less than 50N, they are used on space satellites and are developing rapidly. Problems such as contamination, toxicity of the propellant, difficulty in storing and custody, as well as price, led to the removal of the hydrazine from the focus of attention and focus on green propulsion. One of these, is the green propellant of hydrogen peroxide, which is decomposed in the proper catalytic vicinity, and the only chemical decomposition products are oxygen and water vapour. The present study aims to design and construct mono... 

    Oxidative Desulfurization of Light Fuel Oils

    , Ph.D. Dissertation Sharif University of Technology Sobati, Mohammad Amin (Author) ; Molaei Dehkordi, Asghar (Supervisor) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Oxidative desulfurization (ODS) is one of the desulfurization processes that posseses several important advantages such as mild operating conditions. In the present work, oxidative desulfurization of kerosene with a total sulfur content of 2335 ppm and gas oil with a total sulfur content of 7990 ppm were carefully investigated. By evaluation of different oxidation systems, the hydrogen peroxide-formic acid system was selected for the oxidation of sulfur-containing compounds of the light fuel oils. The effects of main operating parameters of the oxidation system including temperature, hydrogen peroxide to sulfur molar ratio (O/S), and formic acid to sulfur molar ratio (Acid/S) on the... 

    A Study on Morphology, Structure and Properties of Silver and Gold Coatings Applied by a Chemical Reduction Deposition Method Using Double-Spray Device

    , M.Sc. Thesis Sharif University of Technology Bakhshizadeh, Ali (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Silver and gold are precious, expensive metals and are used in various applications, such as jewellery and ornamentals, electronics and optics. In the present study, soda-lime glass surfaces firstly were activated with acidic stannous chloride solution. Then, silver and gold were coated on these surfaces via simultaneous spraying of two solution: A silver- or gold-complex bearing solution and a reducing agent (Dextrose for Ag and H2O2 for Au) bearing solution. For silver coating, the effect of various parameters such as time, reducing agent concentration, number of passes, presence and concentration of Urotrpin and Decamethylcyclopentasiloxane (DMCPS) as microstructural modifiers and... 

    Oxidative desulfurization of Non-hydrotreated kerosene using hydrogen peroxide and acetic acid

    , Article Chinese Journal of Chemical Engineering ; Volume 17, Issue 5 , 2009 , Pages 869-874 ; 10049541 (ISSN) Molaei Dehkordi, A ; Sobati, M. A ; Nazem, M. A ; Sharif University of Technology
    2009
    Abstract
    The oxidative desulfurization of a real refinery feedstock (i.e., non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied. The influences of various operating parameters including reaction temperature (T), acid to sulfur molar ratio (nacid/nS), and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated. The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal. Moreover, there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS8 and 23 for the reaction temperatures of 25... 

    Spectrophotometric determination of sulfide based on peroxidase inhibition by detection of purpurogallin formation

    , Article Ecotoxicology and Environmental Safety ; Volume 91 , 2013 , Pages 117-121 ; 01476513 (ISSN) Ghadiri, M ; Kariminia, H. R ; Roosta Azad, R ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new method for spectrophotometirc detection of sulfide applying fungal peroxidase immobilized on sodium alginate. The sensing scheme was based on decrease of the absorbance of the orange compound, purpurogallin produced from pyrogallol and H2O2 as substrates, due to the inhibition of peroxidase by sulfide. Absorbance of purpurogallin was detected at 420nm by using a spectrophotometer. The proposed method could successfully detect the sulfide in the concentration range of 0.6-7.0μM with a detection limit of 0.4μM. The kinetic parameters of Michaelis-Menten with and without sulfide were also calculated. Possible inhibition mechanism of peroxidase by sulfide was deduced... 

    Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO 2 composites

    , Article Materials Science in Semiconductor Processing ; Volume 15, Issue 1 , February , 2012 , Pages 73-79 ; 13698001 (ISSN) Padervand, M ; Elahifard, M. R ; Vatan Meidanshahi, R ; Ghasemi, S ; Haghighi, S ; Gholami, M. R ; Sharif University of Technology
    2012
    Abstract
    Zeolite-based Ag/AgBr and Ag/AgBr/TiO 2 photocatalysts were prepared by sol-gel and deposition methods and were characterized. Their photocatalytic activities were evaluated by inactivation of Escherichia (E.) coli and the photodegradation of Acid Blue 92 and potassium permanganate. The composites containing Ag/AgBr showed the antibacterial activity in the dark by releasing Ag ions into the medium. The results for inactivation of E. coli indicated that Ag/AgBr/TiO 2 modified photocatalyst had better antibacterial activity than Ag/AgBr/zeolite, while zeolite and TiO 2/zeolite did not show any antibacterial activity under visible light and dark conditions. Photodecolarization rate was affected... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Chemically Modified Electrode Based on Carbon Nanostructures and Metal Nanoparticles: Preparation, Characterization and Application in Determination of the Pharmaceutical and Biological Compounds and Oxygen Reduction at Soft Interfaces Catalyzed by in Situ Generated Reduced Graphene Oxide

    , Ph.D. Dissertation Sharif University of Technology Rastgar Kafshgarkolaei, Shokoufeh (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, the preparation of metallic, bi-metallic (alloy or mixtures) and metallic oxide nanoparticles on the substrate of carbon nanostructures (carbon nanotube and graphene based nanosheets) has been performed using chemical and electrochemical procedures. Then, the prepared nanostructures were characterized by electron microscopy, spectroscopy and electrochemical techniques. Finally, the nanofilms have been evaluated for sensing applications as a modifier on the electrode surface for accurate determination of trace amounts of some important pharmaceutical and biological compounds. In the first work, multi-walled carbon nanotubes decorated with Fe3O4 nanoparticles... 

    Study and Optimization of Operating Parameters of Nanophotocatalytic Wastewater Treatment Process

    , M.Sc. Thesis Sharif University of Technology Qanbarzadeh, Mojtaba (Author) ; Soltanieh, Mohammad (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Feilizadeh, Mehrzad (Co-Advisor)
    Abstract
    In this study, we investigate the effect of adding potassium persulfate (PDS) (K2S2O8) and hydrogen peroxide (H2O2) to E.coli (as a model microorganism) photocatalytic removal system in the presence of the TiO2-P25 as photocatalyst and UV irradiation. In this regard, the PDS and H2O2 oxidants were added separately in the different levels of pH and photocatalyst loading under UV irradiation. The experimental points were determined based on the central composite design (CCD) and in order to study the main and the interactive effects of the photocatalyst concentration (mg/L), oxidant concentration (mg/L) and the pH on the final concentration of E.coli (cfu/mL), a response surface model (RSM)... 

    Designing a Ratiometric Probe for Naked Eye Detection of Hydrogen Peroxide

    , M.Sc. Thesis Sharif University of Technology Mohammadpour, Fatemeh (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    Hydrogen peroxide (H2O2) is of great importance in numerous fields such as pharmaceuticals, mining, textile, environmental and food industry. Therefore, the development of low cost, on-site, and uncomplicated H2O2 sensors are of high interest. To date, colloidal quantum dots (QDs) have been used to detect H2O2 based on the quenching of fluorescence intensity in a single wavelength. However, intensity of fluorescent signal could be easily disturbed by various factors. To overcome these undesirable effects, here, a ratiometric sensor has been developed by adding a second fluorophore (as reference) to QDs. For this purpose TGA-capped CdTe QDs were prepared. To detect H2O2, the ratiometric... 

    Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide

    , Article Catalysis Communications ; Vol. 52, issue , July , 2014 , pp. 16-21 ; ISSN: 15667367 Bayat, A ; Shakourian-Fard, M ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    An efficient method is reported for selective oxidation of various types of sulfides to sulfoxides and sulfones in good to high yields using 30% H 2O2 in the presence of catalytic amounts of molybdate-based catalyst in acetonitrile as solvent at room temperature. The catalyst can be easily recovered and reused for seven reaction cycles without considerable loss of activity  

    Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst

    , Article Catalysis Communications ; Vol. 43 , 5 January , 2014 , pp. 169-172 Vafaeezadeh, M ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Abstract
    A novel silica-functionalized ammonium tungstate interphase catalyst has been reported as a non-nitric acid route for adipic acid production from one-pot oxidative cleavage of 30% hydrogen peroxide and catalytic amounts of p-toluenesulfonic acid (PTSA). The catalyst has been simply prepared by commercially available starting material. The structure of the catalyst has been investigated using FT-IR spectroscopy, atomic absorption, TEM, SEM and XRD analysis. The catalyst has shown good to high activity even up to 10 runs of reaction. Simple preparation of the catalyst, avoids using harmful phase transfer catalyst (PTC) and/or chlorinated additives are among the other benefits of this work  

    Turbulence and additive effects on ignition delay in supersonic combustion

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 1 , 2013 , Pages 93-99 ; 09544100 (ISSN) Tahsini, A. M ; Sharif University of Technology
    2013
    Abstract
    Numerical study of two-dimensional supersonic hydrogen-air mixing layer is performed to investigate the effects of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes, and one-equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion  

    A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins

    , Article Dalton Transactions ; Volume 41, Issue 36 , Jul , 2012 , Pages 11026-11031 ; 14779226 (ISSN) Najafpour, M. M ; Rahimi, F ; Amini, M ; Nayeri, S ; Bagherzadeh, M ; Sharif University of Technology
    RSC  2012
    Abstract
    Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient catalytic activity toward water oxidation and the epoxidation of olefins in the presence of cerium(iv) ammonium nitrate and hydrogen peroxide, respectively  

    Design of silica supported task-specific ionic liquid catalyst system for oxidation of cyclohexene to adipic acid with 30% H 2O 2

    , Article Catalysis Communications ; Volume 26 , September , 2012 , Pages 54-57 ; 15667367 (ISSN) Vafaeezadeh, M ; Hashemi, M. M ; Shakourian Fard, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    1-Butyl-3-methylimidazolium tungstate ([BMIm] 2WO 4) ionic liquid supported onto silica sulphamic acid demonstrated desirable performance for oxidation of cyclohexene to adipic acid. Simple experimental procedure, easy product isolation, catalyst recovery and reusability are some attractive features of this protocol  

    Synthesis, X-ray structure, characterization and catalytic activity of a polymeric manganese(II) complex with iminodiacetate

    , Article Applied Organometallic Chemistry ; Volume 25, Issue 7 , 2011 , Pages 559-563 ; 02682605 (ISSN) Bagherzadeh, M ; Amini, M ; Boghaei, D. M ; Najafpour, M. M ; McKee, V ; Sharif University of Technology
    2011
    Abstract
    A polymeric manganese(II) complex with the general formula [Mn(O 2CCH2NH2CH2CO2) 2(H2O)2]n from reaction of iminodiacetatic acid and manganese(II) perchlorate under nitrogen in water, was synthesized and characterized. The structure of the complex was determined using single-crystal X-ray diffraction, elemental analysis, IR and UV-vis spectra. This complex exhibited excellent catalytic activity and selectivity for oxidation of various alcohols and sulfides to the corresponding aldehydes/ketone and sulfoxides using urea hydrogen peroxide and oxone (2KHSO 5·KHSO4·K2SO4), respectively, as oxidants under air at room temperature. The easy preparation, mild reaction conditions, high yields of the... 

    Fabrication of Nanocomposite Modified Materials Based on Bi-Metalic Transition Metal Sulfide Using Copper (I) Oxide Nanospheres as a Catalytic Substrate for Designation of Amperometric Non-Enzymatic Hydrazine and Hydrogen peroxide Sensors

    , M.Sc. Thesis Sharif University of Technology Darvishmehr, Zahra (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this study, transition metal sulfide, with a high accessible surface and abundant electroactive centers, was used as an electrocatalyst to fabrication an electrochemical sensor of hydrazine and hydrogen peroxide. the direct growth of thin film of nanocomposite can be considered as an efficient method to modify the electrode surface, and the application of these modified electrodes as electrochemical sensors. the cobalt iron sulfide (CoFeS) nanosheets were directly grown on Cu2O nanospheres in order to design hierarchical nanocomposite by using efficient, inexpensive and fast method. Here, Cu2O nanospheres not only served as substrate, but also steer the CoFeS to attach on nanospheres...