Loading...
Search for: incompressible-flows
0.008 seconds
Total 106 records

    MHD flow in a channel using new combination of order of magnitude technique and HPM [MHD tok u kanalu uporabom novih kombinacija tehnika grubog opisa vrijednosti i HPM]

    , Article Tehnicki Vjesnik ; Volume 21, Issue 2 , April , 2014 , Pages 317-321 ; ISSN: 13303651 Abbasi, M ; Ganji, D. D ; Rahni, M. T ; Sharif University of Technology
    Abstract
    The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained... 

    Numerical simulation of low-mach-number laminar mixing and reacting flows using a dual-purpose pressure-based algorithm

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 59, Issue 6 , Jun , 2011 , Pages 495-514 ; 10407790 (ISSN) Ebrahimi Kebria, H ; Darbandi, M ; Hosseinizadeh, S. F ; Sharif University of Technology
    2011
    Abstract
    Benefitting from an analogy between compressible and incompressible governing equations, a novel dual-purpose, pressure-based finite-volume algorithm is suitably extended to simulate laminar mixing and reacting flows in low-Mach-number regimes. In our test cases, the Mach number is as high as 0.00326. Definitely, such low-Mach-number flows cannot be readily solved by either regular density-based solvers or most of their extensions. To examine the accuracy and performance of the extended formulation and algorithm, we simulate two benchmark cases including the mixing natural-convection flow in a square cavity with strong temperature gradients and the premixed reacting flow through annuli with... 

    On application of high-order compact finite-difference schemes to compressible vorticity confinement method

    , Article Aerospace Science and Technology ; Volume 46 , October–November , 2015 , Pages 398-411 ; 12709638 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    The main goal of this study is to assess the application of high-order compact finite-difference schemes for the solution of the Euler equations in conjunction with the compressible vorticity confinement method on both uniform Cartesian and curvilinear grids. Here, the spatial discretization of the governing equations is performed by the fourth-order compact finite-difference scheme and the temporal term is discretized by the fourth-order Runge-Kutta method. To stabilize the numerical solution, appropriate dissipation terms are applied and a detail assessment is performed to study the effects of the values of confinement and dissipation coefficients on the solution to reasonably preserve the... 

    Entropy generation for compressible natural convection with high gradient temperature in a square cavity

    , Article International Communications in Heat and Mass Transfer ; Volume 37, Issue 9 , November , 2010 , Pages 1388-1395 ; 07351933 (ISSN) Alipanah, M ; Hasannasab, P ; Hosseinizadeh, S. F ; Darbandi, M ; Sharif University of Technology
    2010
    Abstract
    Entropy generation due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subjected to different side wall temperatures for compressible and incompressible natural convection flows. Based on the obtained velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined and compared for compressible and incompressible regimes. It is found that the entropy generated for compressible flow always is more than incompressible flow. The study is performed for Ra=10 4-10 8, j{cyrillic, ukrainian}=0.01(incompressible regime) and 0.6 (compressible regime), Ge=10 -5 and Pr=0.7  

    A consistent incompressible SPH method for internal flows with fixed and moving boundaries

    , Article International Journal for Numerical Methods in Fluids ; Volume 81, Issue 10 , 2016 , Pages 589-610 ; 02712091 (ISSN) Jahangiri Mamouri, S ; Fatehi, R ; Taghizadeh Manzari, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    An improved incompressible smoothed particle hydrodynamics (ISPH) method is presented, which employs first-order consistent discretization schemes both for the first-order and second-order spatial derivatives. A recently introduced wall boundary condition is implemented in the context of ISPH method, which does not rely on using dummy particles and, as a result, can be applied more efficiently and with less computational complexity. To assess the accuracy and computational efficiency of this improved ISPH method, a number of two-dimensional incompressible laminar internal flow benchmark problems are solved and the results are compared with available analytical solutions and numerical data.... 

    Identifiability of location and magnitude of flow barriers in slightly compressible flow

    , Article SPE Journal ; Volume 21, Issue 3 , 2016 , Pages 899-908 ; 1086055X (ISSN) Kahrobaei, S ; Mansoori Habibabadi, M ; Joosten, G. J. P ; Van Den Hof, P. M. J ; Jansen, J. D ; Sharif University of Technology
    Society of Petroleum Engineers 
    Abstract
    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between wells can be identified. We extend the classic analysis by including compressibility effects. We use two approaches: a twin experiment with synthetic production data for use with a time-domain parameter-estimation technique, and a transfer-function formalism in the form of bilaterally coupled four-ports allowing for an analysis in the frequency domain. We investigate the identifiability, from noisy... 

    Numerical study of AN ion injection EHD micropump

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009 ; Issue PART A , 2009 , Pages 179-185 ; 9780791843499 (ISBN) Ghazi, R ; Saidi, M. S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The purpose of this study is to carry out a numerical investigation of injection type EHD pumps. To this end, the flow is considered laminar, steady and incompressible flow. The flow model is based on the assumptions that the fluid is Newtonian and the fluid properties are constant. The results show that all of the ions emitted from emitter are not collected by next collector electrode, but some of this injected ions move to the previous one, which causes back flow. Although this back flow is smaller than net pumping flow but it would reduce the net flow. Because of existence of this back flow, finding the optimum distance of electrodes from each other is necessary. This study shows that... 

    Assessment of characteristic boundary conditions based on the artificial compressibility method in generalized curvilinear coordinates for solution of the Euler equations

    , Article Computational Methods in Applied Mathematics ; Volume 18, Issue 4 , 2018 , Pages 717-740 ; 16094840 (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    De Gruyter  2018
    Abstract
    The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary... 

    Simulation of compressible and incompressible flows through planar and axisymmetric abrupt expansions

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 141, Issue 11 , 2019 ; 00982202 (ISSN) Nouri Borujerdi, A ; Shafiei Ghazani, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    In this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a... 

    A pressure-based algorithm for internal compressible turbulent flows through a geometrical singularity

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 75, Issue 2 , 2019 , Pages 127-143 ; 10407790 (ISSN) Nouri Borujerdi, A ; Shafiei Ghazani, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Compressible turbulent flow through the abrupt enlargement in pipes is studied numerically by means of Advection Upstream Splitting Method (AUSM+-up). In low Mach numbers, a pressure correction equation of elliptic type is derived. This equation is compatible with the nature of governing equations and retrieves hyperbolic characteristic at higher Mach numbers. It is shown that the proposed numerical algorithm is computationally more efficient than the preconditioned density-based methods. The flow parameters such as reattachment length, pressure loss coefficient and wall shear stress are predicted. It is found that the loss coefficient of the compressible flow rises drastically with... 

    Aeroelastic instability of aircraft composite wings in an incompressible flow

    , Article Composite Structures ; Volume 83, Issue 1 , 2008 , Pages 93-99 ; 02638223 (ISSN) Haddadpour, H ; Kouchakzadeh, M. A ; Shadmehri, F ; Sharif University of Technology
    2008
    Abstract
    The aeroelastic stability of an aircraft wing modeled as an anisotropic composite thin-walled beam in an incompressible flow is investigated. The wing is built-up as a single-cell box beam whose central point is noncoincident with the mid-chord of the profile. The effects of material anisotropy, transverse shear, warping inhibition, nonuniform torsional model and rotary inertia are considered in the structural model. The unsteady incompressible aerodynamics based on Wagner's function is used to determine the aerodynamic loads. The effects of the offset between reference axis and the mid-chord ("a" parameter), fiber orientation and sweep angle on stability boundary are considered, their... 

    Numerical investigations of fluid flow and lateral fluid dispersion in bounded granular beds in a cylindrical coordinates system

    , Article Chemical Engineering and Technology ; Volume 30, Issue 10 , 2007 , Pages 1369-1375 ; 09307516 (ISSN) Soleymani, A ; Turunen, I ; Yousefi, H ; Bastani, D ; Sharif University of Technology
    2007
    Abstract
    Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through a random packing of non-overlapping spheres at moderate Reynolds numbers, spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier-Stokes equations in three-dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study. This observation suggests that no transition to turbulence could occur in the range of the Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of... 

    A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 17, Issue 7 , 2007 , Pages 715-735 ; 09615539 (ISSN) Hosseini, S. M ; Taghizadeh Manzari, M ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2007
    Abstract
    Purpose - This paper sets out to present a fully explicit smoothed particle hydrodynamics (SPH) method to solve non-Newtonian fluid flow problems. Design/methodology/approach - The governing equations are momentum equations along with the continuity equation which are described in a Lagrangian framework. A new treatment similar to that used in Eulerian formulations is applied to viscous terms, which facilitates the implementation of various inelastic non-Newtonian models. This approach utilizes the exact forms of the shear strain rate tensor and its second principal invariant to calculate the shear stress tensor. Three constitutive laws including power-law, Bingham-plastic and... 

    Multiblock hybrid grid finite volume method to solve flow in irregular geometries

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 196, Issue 1-3 , 2006 , Pages 321-336 ; 00457825 (ISSN) Darbandi, M ; Naderi, A ; Sharif University of Technology
    2006
    Abstract
    In this work, a finite-volume-based finite-element method is suitably developed for solving incompressible flow and heat transfer on collocated hybrid grid topologies. The method is generally applicable to arbitrarily shaped elements and orientations and, thus, challenges the potential to unify many of the different grid topologies into a single formulation. The key point in this formulation is the correct estimation of the convective and diffusive fluxes at the cell faces using a novel physical influence scheme. This scheme remarkably enhances the achieved solution accuracy. It is shown that the extended formulation is robust enough to treat any combination of multiblock meshes with dual... 

    Implementation of high-order compact schemes to the iterative parabolized Navier-Stokes equations

    , Article 25th Congress of the International Council of the Aeronautical Sciences 2006, Hamburg, 3 September 2006 through 8 September 2006 ; Volume 3 , 2006 , Pages 1628-1643 Esfahanian, V ; Hejranfar, K ; Darian, H. M ; Sharif University of Technology
    Curran Associates Inc  2006
    Abstract
    The numerical solution of the parabolized Navier-Stokes (PNS) and globally iterated PNS (IPNS) equations for accurate computation of hypersonic axisymmetric flowfields is obtained by using the fourth-order compact finite-difference method. The PNS and IPNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in both the compact PNS and IPNS schemes to obtain accurate solutions in the vicinity of the shock. The main advantage of the present formulation is that the basic flow variables and their first and second derivatives are... 

    Numerical simulation of liquid/gas phase flow during mold filling

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 196, Issue 1-3 , 2006 , Pages 697-713 ; 00457825 (ISSN) Tavakoli, R ; Babaei, R ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    A numerical model for simulation of liquid/gas phase flow during mold filling is presented. The incompressible Navier-Stokes equations are discretized on a fixed Cartesian mesh with finite difference method. The fractional-step scheme is employed for enforcing incompressibility constraint. The free surface effects are calculated using the volume of fluid method based on the piecewise-linear interface reconstruction and split Lagrangian advection of volume fraction field. Adding limited compressibility to the gas phase led to improvement in convergence rate of Poisson equation solver (about 2-fold). This new concept permits simulation of two-phase incompressible free surface flow during mold... 

    Liquid flow analysis in concentric annular heat pipes wicks

    , Article Journal of Porous Media ; Volume 8, Issue 5 , 2005 , Pages 471-480 ; 1091028X (ISSN) Nouri Borujerdi, A ; Layeghi, M ; Sharif University of Technology
    2005
    Abstract
    In this paper, two models are developed to predict liquid pressure drop and velocity profile in the wicks of concentric annular heat pipes. A steady-state incompressible laminar flow is modeled in the wicks based on velocity and pressure mean values by the extended Darcy-Brinkman model. The corresponding one- and two-dimensional governing equations are solved analytically and numerically, respectively, in the range of low to moderate radial Reynolds numbers. It has been found that there is a difference, about 12% in the worse case, between the total pressure drops of the two models. Whereas, the predicted total pressure drop by the one-dimensional model and that of the Darcy model are in... 

    Numerical experiments with compressible free convection in vertical slots

    , Article 38th AIAA Thermophysics Conference, Toronto, ON, 6 June 2005 through 9 June 2005 ; 2005 ; 9781624100611 (ISBN) Darbandi, M ; Hosseinizadeh, S. F ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    One important heat transfer application in engineering is to predict the flow behavior and heat transfer rate in thin vertical air layers. There are numerous applications in engi- neering where high temperature gradients exist between the slot walls. In such cases, the methods based on simple Boussinesq approximations do not provide reliable predictions. Unfortunately, the compressibility effect in heat transfer rate through thin vertical slots has not been much investigated by the past investigators. In this work, a compressible algorithm is properly developed and utilized to solve compressible natural convection in vertical air layers. The current technique employs discretization equations... 

    Development of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization

    , Ph.D. Dissertation Sharif University of Technology Parseh, Kaveh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds... 

    Direct Numerical Simulation of External In-compressible Flow Using High-order Accurate Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Aboutalebi, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, a high-order finite-difference lattice Boltzmann solver is applied for simulating steady and unsteady three-dimensional incompressible flows. To achieve an accurate and robust flow solver, the incompressible form of the lattice Boltzmann equation in the three-dimensional generalized curvilinear coordinates is discretized spatially based on the fifth-order weighted essentially non-oscillatory (WENO) finite-difference scheme. To ensure the stability and temporal accuracy of the flow solver, the fourth-order Runge-Kutta method is used for the time integration. To examine the accuracy and performance of the flow solver, different three-dimensional incompressible flow...