Loading...
Search for: initial-conditions
0.006 seconds
Total 37 records

    A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests

    , Article Scientia Iranica ; Volume 19, Issue 2 , Volume 19, Issue 2 , 2012 , Pages 249-257 ; 10263098 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Salehi, H ; Sharif University of Technology
    2012
    Abstract
    Recently, Shape Memory Alloys (SMAs) have been receiving more attention and further study, due to their ability to develop extremely large, recoverable strains and great forces. In this paper, three major models of SMA behavior, used in the literature, for studying the static performance of SMA components attributed to Tanaka, Liang and Rogers, and Brinson, have been analyzed and compared. The major differences and similarities between these models have also been emphasized and presented in this paper, based on the experimental data of the shape memory and superelastic behavior of an SMA wire. It is shown that these models all agree well in their prediction of the superelastic behavior of... 

    An iterative scheme for Gaussian beam expansion of electromagnetic waves

    , Article IET Conference Publications, 3 November 2009 through 6 November 2009 ; Volume 2009, Issue 557 CP , 2009 , Pages 316-318 ; 9781849191401 (ISBN) Naqavi, A ; Alavi Rad, S. M ; Shabani, M ; Shishegar, A. A ; Sharif University of Technology
    Abstract
    Point matching technique is applied to a pyramidal horn antenna to expand its aperture field in a wide angular range in terms of Gaussian beams using the Jacobi iterative method. The obtained far field pattern is compared with the results of Gabor's Gaussian beam expansion. Convergence, speed, the impact of initial condition and the selection of sample points is discussed. The implemented point matching scheme is almost as fast and accurate as the Gabor's expansion. It can even be faster and more accurate in some cases especially when the Gaussian beams are neither wide-waisted nor narrow-waisted  

    Cone penetration test in sand: anumerical-analytical approach

    , Article Computers and Geotechnics ; Volume 90 , 2017 , Pages 176-189 ; 0266352X (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Abstract
    Separation of the effects of initial horizontal stress and relative density on cone tip resistance in sandy soils has been a complicated issue for many years. In order to overcome this problem, a numerical modeling of CPT which has been verified by calibration chamber tests, has been used in this paper to achieve a reliable analytical solution. The analytical solution has resulted in two relationships for sleeve friction and cone tip resistance in terms of the initial conditions of sandy soil. Based on the presented solution, the initial horizontal stress and relative density can be determined according to CPT measurements. © 2017 Elsevier Ltd  

    On discretization of second-order derivatives in smoothed particle hydrodynamics

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 243-246 ; 2010376X (ISSN) Fatehi, R ; Fayazbakhsh, M. A ; Taghizadeh Manzari, M ; Sharif University of Technology
    2009
    Abstract
    Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e."double summation","second-order kernel derivation", and"difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this... 

    Hysteretic heat transfer study of liquid–liquid two-phase flow in a T-junction microchannel

    , Article International Journal of Heat and Fluid Flow ; Volume 77 , 2019 , Pages 366-376 ; 0142727X (ISSN) Moezzi, M ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Liquid–liquid two-phase flow in microchannels is capable of boosting the heat removal rate in cooling processes. Formation of different two-phase flow patterns which affect the heat transfer rate is numerically investigated here in a T-junction containing water-oil flow. For this purpose, the finite element method (FEM)is applied to solve the unsteady two-phase Navier–Stokes equations along with the level set (LS)equation in order to capture the interface between phases. It is shown that the two-phase flow pattern in microchannels depends on the flow initial condition which causes hysteresis effect in two-phase flow. In this study, the hysteresis is observed in flow pattern and consequently... 

    Homotopy perturbation method for unsteady motion of a single bubble in a highly viscous liquid

    , Article Chemical Engineering Communications ; 2020 Shahsavari, M ; Oshaghi, M. R ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In this study, the dynamics of the accelerated and steady-state motion of a single bubble in a quiescent highly viscous Newtonian liquid was investigated theoretically and experimentally. The presented mathematical model was based on Newton's second law of motion and a balance of buoyancy, drag, history, and added-mass forces. Due to the presence of non-linear terms in the equation of motion, homotopy perturbation method was used as a powerful analytical method to calculate the velocity analytically. To obtain accurate results in the experiments, a high-speed camera was used to record the bubble motion from the moment of detachment to the time at which the terminal velocity is reached.... 

    A meshless approach for solution of Burgers' equation

    , Article Journal of Computational and Applied Mathematics ; Volume 220, Issue 1-2 , 2008 , Pages 226-239 ; 03770427 (ISSN) Hashemian, A ; Mohammadi Shodja, H ; Sharif University of Technology
    2008
    Abstract
    A new meshless method called gradient reproducing kernel particle method (GRKPM) is proposed for numerical solutions of one-dimensional Burgers' equation with various values of viscosity and different initial and boundary conditions. Discretization is first done in the space via GRKPM, and subsequently, the reduced system of nonlinear ordinary differential equations is discretized in time by the Gear's method. Comparison with the exact solutions, which are only available for restricted initial conditions and values of viscosity, approves the efficacy of the proposed method. For challenging cases involving small viscosities, comparison with the results obtained using other numerical schemes... 

    Generation and dissipation of excess pore water pressure during CPTu in clayey soils: A numerical approach

    , Article Geotechnical and Geological Engineering ; Volume 39, Issue 5 , Febrauy , 2021 , Pages 3639-3653 ; 09603182 (ISSN) Golestani Dariani, A. A ; Ahmadi, M. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Do all the clayey soils have the same behavior in terms of the generation and dissipation of excess pore water pressure during the piezocone penetration process? To find the answer, a coupled numerical simulation of CPTu in clays based on finite element analysis is presented in this paper. In this regard, the numerical modeling is verified by some laboratory tests on the samples with known initial conditions and stress states as well as field measurements of piezocone testing. Generation of excess pore water pressure during the penetration process is then investigated at different locations around the cone. This study encompasses piezocone penetration in both normally consolidated and... 

    Prescribed-Time control for perturbed euler-lagrange systems with obstacle avoidance

    , Article IEEE Transactions on Automatic Control ; Volume 67, Issue 7 , 2022 , Pages 3754-3761 ; 00189286 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article introduces a class of time-varying controllers for Euler-Lagrange systems such that the convergence occurs at an arbitrary finite time, independently of initial conditions, and free of chattering. The proposed controller is based on a mapping technique and is designed in two steps: First, a conventional (obstacle avoidance) asymptotically stable controller is specified for the nominal system; then, by a simple substitution, a prescribed-time (obstacle avoidance) controller is achievable for the perturbed system. It is proved that the proposed scheme is uniformly prescribed-time stable for unperturbed systems and prescribed-time attractive for perturbed systems as it rejects... 

    A fuzzy-plos guidance law for precise trajectory tracking of a UAV in the presence of wind

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 105, Issue 1 , 2022 ; 09210296 (ISSN) Nobahari, H ; Asghari, J ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    The combination of pursuit and line of sight guidance laws, called PLOS, is used to steer an unmanned aerial vehicle along a desired path. In the previous studies, the parameters of this guidance law are tuned by trial and error and are constant, during the flight. In this research, it will be shown that the optimal value of these parameters depends on the initial conditions of the problem and the wind conditions. For this reason, a fuzzy system is proposed to generate the instantaneous optimal value of these parameters, in such a way that the flying vehicle converges to the desired path in less time and follows it more accurately, in the presence of wind. For this purpose, a cost function... 

    Electron trajectory evaluation in laser-plasma interaction for effective output beam

    , Article Chinese Physics B ; Volume 19, Issue 6 , 2010 ; 16741056 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2010
    Abstract
    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and... 

    Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    , Article Energy Conversion and Management ; Volume 50, Issue 4 , 2009 , Pages 1062-1068 ; 01968904 (ISSN) MolaeiDehkordi, A ; Mohammadi, A. A ; Sharif University of Technology
    2009
    Abstract
    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local... 

    Micro resonator nonlinear dynamics considering intrinsic properties

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 121-129 ; 10263098 (ISSN) Sayyaadi, H ; Tadayon, M. A ; Eftekharian, A. A ; Sharif University of Technology
    2009
    Abstract
    One of the most important phenomena to affect the motion behaviour of Micro Resonators is their thermal dependency. This has recently received the attention of researchers widely. A thermal phenomenon has two main effects, the first is damping, due to internal friction, and the second is softening, due to Young's modulus-temperature relationship. In this research work, some theoretical and experimental reported results are used to make a proper model, including thermal phenomena. Two Lorentzian functions are used to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, considering capacitor... 

    An optimization-based approach to control of robotic manipulators

    , Article Proceedings - IEEE International Conference on Robotics and Automation, 12 May 2009 through 17 May 2009, Kobe ; 2009 , Pages 3347-3352 ; 10504729 (ISSN); 9781424427895 (ISBN) Mohajerin Esfahani, P ; Karimi-Ghartemani, M ; Namvar, M ; Sharif University of Technology
    2009
    Abstract
    This paper proposes a method to suboptimally tune the control parameters in a conventional Lyapunov-Based method which shares the same concept of control design with sliding mode approach as applied to the robot manipulators. Optimal tuning of such parameters involves handling of nonlinearities in system dynamics and cost functions, which makes the problem challenging. We propose a step-by-step numerical algorithm that select suboptimal parameters while ensuring system stability. The controller is, suboptimal due to the facts that (1) it is in the form of a Slotine-type sliding mode control, (2) the numerical recursive algorithm might fall into a local minimum, and (3) the controller... 

    Design optimization of an above-knee prosthesis based on the kinematics of gait

    , Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 4274-4277 ; 9781424418152 (ISBN) Pejhan, S ; Farahmand, F ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    A dynamic model of an above-knee prosthesis during the complete gait cycle was developed. The model was based on a two-dimensional multi-body mechanical system and included a hydraulic and an elastic controller for the knee and a kinematical driver controller for the prosthetic ankle. The equations of motion were driven using Lagrange method. Simulation of the foot contact was conducted using a two-point penetration contact model. The knee elastic and hydraulic controller units, the knee extension stop, and the kinematical driver controller of the ankle were represented by a spring and a dashpot, a nonlinear spring, and a torsional spring-damper within a standard prosthetic configuration.... 

    Stabilization of biped walking robot using the energy shaping method

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 3, Issue 4 , 2008 ; 15551423 (ISSN) Azadi Yazdi, E ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    The biped walking robot demonstrates a stable limit cycle on shallow slopes. In previous researches, this passive gait was shown to be sensitive to ground slope and initial conditions. In this paper, we discuss the feedback stabilization of a biped robot by the "energy shaping" technique. Two designs are proposed to reduce the sensitivity of the biped walking robot to slope and initial conditions. In the first design, a moving mass actuator is located on each link of the robot. The actuators are used to shape the potential energy of the biped robot so that it tracks the potential energy of a known passive gait of a similar biped robot on a different slope. Although the method is applied to a... 

    A new non-linear algorithm for complete pre-flight calibration of magnetometers in the geomagnetic field domain

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 223, Issue 6 , 2009 , Pages 729-739 ; 09544100 (ISSN) Ghanbarpour Asl, H ; Pourtakdoust, S. H ; Samani, M ; Sharif University of Technology
    2009
    Abstract
    A new algorithm for complete pre-flight calibration of triple magnetometers is developed. The traditional approach for calibrating these sensors are based on a cumbersome procedure called 'swing' that involves levelling and rotating the vehicle containing the magnetometers through a series of known headings. Application of such a procedure is difficult and costly. Recently, new approaches have been developed to calibrate magnetometers without the need of attitude information. Such methods are used mostly for the calibration of biases and scale factors. Additionally in situations where misalignment errors are also to be estimated, they are usually modelled as errors of a non-orthogonal frame...