Loading...
Search for: interfacial-tension
0.006 seconds
Total 83 records

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; 2020 Alizadeh, M. R ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 953-963 ; 09307516 (ISSN) Behesht, M ; Roostaazad, R ; Farhadpour, F ; Pishvaei, M. R ; Sharif University of Technology
    2008
    Abstract
    A three-dimensional multi-component transport model in a two-phase oil-water system was developed. The model includes separated terms to account for the dispersion, convection, injection, growth and death of microbes, and accumulation. For the first time, effects of both wettability alteration of reservoir rock from oil wet to water wet and reduction in interfacial tension (IFT) simultaneously on relative permeability and capillary pressure curves were included in a MEOR simulation model. Transport equations were considered for the bacteria, nutrients, and metabolite (bio-surfactant) in the matrix, reduced interfacial tension on phase trapping, surfactant and polymer adsorption, and effect... 

    Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir

    , Article Applied Microbiology and Biotechnology ; Volume 97, Issue 13 , July , 2013 , Pages 5979-5991 ; 01757598 (ISSN) Rabiei, A ; Sharifinik, M ; Niazi, A ; Hashemi, A ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC)...