Loading...
Search for: kalman-filters
0.008 seconds
Total 272 records

    Model identification of a Marine robot in presence of IMU-DVL misalignment using TUKF

    , Article Ocean Engineering ; Volume 206 , 2020 Ghanipoor, F ; Alasty, A ; Salarieh, H ; Hashemi, M ; Shahbazi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In today's world, control and navigation of autonomous underwater vehicles (AUVs) are quite challenging issues. In these fields, obtaining an identified dynamic model of AUV is a vital part. In this paper, a method for parameter estimation of an AUV planar model is proposed, which uses augmented state space technique and Square Root Transformed Unscented Kalman Filter (SR-TUKF) as an estimator. Furthermore, by modeling, misalignment between Inertial Measurement Unit (IMU) and Doppler Velocity Log (DVL) is estimated, simultaneously. Parameter identification is conducted using data of an AUV, equipped with Gyroscope, DVL and Encoder for measuring control inputs, in a planar maneuver. According... 

    Data reconciliation: Development of an object-oriented software tool

    , Article Korean Journal of Chemical Engineering ; Volume 25, Issue 5 , 2008 , Pages 955-965 ; 02561115 (ISSN) Farzi, A ; Mehrabani Zeinabad, A ; Boozarjomehry Boozarjomehry , R ; Sharif University of Technology
    2008
    Abstract
    Object-oriented modeling methodology is used for encapsulating different methods and attributes of data reconciliation (DR) in classes. Classes which are defined for DR, cover steady-state, dynamic, linear and nonlinear DR problems. Two main classes are Constraints and DR and defined for manipulating constraints and general DR problem. The remaining classes are derived from these two classes. A class namely DDRMethod is developed for encapsulating all common attributes and methods needed for any DDR method. Developed DR software and the method of performing dynamic DR are discussed in this paper. Two illustrative examples of Extended Kalman Filtering and artificial neural networks are used... 

    Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control

    , Article Chaos, Solitons and Fractals ; Volume 36, Issue 5 , 2008 , Pages 1295-1304 ; 09600779 (ISSN) Behzad, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of... 

    Adaptive modeling of powder deposition for control and monitoring application

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 1 A , 2005 , Pages 755-760 ; 0791847381 (ISBN) Durali, M ; Fathi, A ; Khajepour, A ; Toyserkani, E ; Sharif University of Technology
    2005
    Abstract
    Laser Powder Deposition technique is an advanced production method with many applications. Despite this fact, reliable and accurate control schemes have not yet fully developed for this method. This article presents method for in time identification of the process for modeling and adaptation of proper control strategy. ARMAX structure is chosen for system model. Recursive least square method and Kalman Filter methods are adopted for system identification, and their performance are compared. Experimental data was used for system identification, and proper filtering schemes are devised here for noise elimination and increased estimation results. It was concluded that although both methods... 

    State estimation in a batch suspension polymerization reactor

    , Article Iranian Polymer Journal (English Edition) ; Volume 10, Issue 3 , 2001 , Pages 173-187 ; 10261265 (ISSN) Shahrokhi, M ; Fanaei, M. A ; Sharif University of Technology
    2001
    Abstract
    This paper concerns non-linear state estimation in a batch polymerization reactor where suspension polymerization of methyl methacrylate takes place. A kinetic model proposed in the literature is selected and its validity has been verified through an experimental set-up. Based on this model monomer conversion and average molecular weights of the polymer are estimated using only one output measurement (reactor temperature). The performance of the estimator, which has the structure of an extended Kalman filter, is examined through simulation and experimental studies in the presence of different levels of parameter uncertainties. The effects of adding 'fictitious noise' and parameter state' to... 

    A robust kalman filter-based approach for SoC estimation of lithium-ION batteries in smart homes

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Rezaei, O ; Habibifar, R ; Wang, Z ; Sharif University of Technology
    MDPI  2022
    Abstract
    Battery energy systems are playing significant roles in smart homes, e.g., absorbing the uncertainty of solar energy from root-top photovoltaic, supplying energy during a power outage, and responding to dynamic electricity prices. For the safe and economic operation of batteries, an optimal battery-management system (BMS) is required. One of the most important features of a BMS is state-of-charge (SoC) estimation. This article presents a robust central-difference Kalman filter (CDKF) method for the SoC estimation of on-site lithium-ion batteries in smart homes. The state-space equations of the battery are derived based on the equivalent circuit model. The battery model includes two RC... 

    Enhancing the robustness of INS-DVL navigation using rotational model of AUV in the presence of model uncertainty

    , Article IEEE Sensors Journal ; Volume 22, Issue 11 , 2022 , Pages 10931-10939 ; 1530437X (ISSN) Ramezanifard, A ; Hashemi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Nowadays, Autonomous Underwater Vehicles (AUV) are used in environmental studies, ocean floor mapping, and measuring water properties. Navigation of these vehicles is one of the most challenging issues due to the unavailability of global positioning system (GPS) signal underwater. Inertial navigation is a method commonly used for underwater navigation. If a low-cost Inertial Measurement Unit (IMU) is used, navigation quality will decline rapidly due to sensor inherent error. Although using a Doppler Velocity Log (DVL) speedometer sensor helps limit this error to some extent, it does not yield acceptable accuracy in low-cost IMUs. Filtering the gyro based on the AUV rotational dynamics model... 

    Autonomous Orbit and Attitude Estimation of Satellite Using Star Sensor and Earth Sensor

    , M.Sc. Thesis Sharif University of Technology Hosseini Moghaddam, Mohammad Hossein (Author) ; Ghanbarpour Asl, Habib (Supervisor)
    Abstract
    In this Thesis, attitude and orbit of a satellite is estimated using a star sensor and an earth sensor. An algorithm has been developed to estimate satellite attitude and orbit that can be implement on a satellite as strap-down hardware. This system has an uncomplicated implementation compared with platform based systems. That mentioned algorithm estimates satellite orbit by using identified star vectors via star sensor and identified earth vector via earth sensor simultaneously. It also knows the stars vectors according to Star Catalog. Attitude estimation is also executed using both star and earth sensor. It has to be said that an Unscented Kalman Filter synthesize both sensors output data... 

    Comparative Studies on Performance of Two Variants of Nonlinear Kalman Filters for Controlling a Sofc Unit

    , M.Sc. Thesis Sharif University of Technology Amedi, Hamid Reza (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    In thisstudy, a three-dimensional modelbased onpartial differential equations (PDEs) was used foraplanarsolid oxidefuel cellunit. These PDEs were evaluatedregardingthe equations ofconservation involvingelectric, ionic charge, mass,energy andmomentum equilibriums.To investigate the behavior and strength of the presented model, thestatic and dynamic analyses were considered. The trend of the system against thechanges incurrent density, flow rateand fuelflow ratewere investigated.The PDE of the real model evaluated using the finite element method inCOMSOLsoftware and The PDE of the EstimatorisimplementedinMATLABenvironment by orthogonalcollocation method.Kalman Nonlinearobserverto estimate... 

    Attitude and Deformation Estimation of Flexible Satellite Using Magnetometer and Sun Sensor

    , M.Sc. Thesis Sharif University of Technology Ghani, Marzieh (Author) ; Asadian, Nima (Supervisor)
    Abstract
    The estimation of attitude and deformation of a flexible satellite using magnetometer and sun sensor data are studied in this thesis. To this end, the dynamical differential equations of the flexible satellite have been derived using Lagrange’s equation. These equations of motion are then utilized for the purpose of simulation and verification. After introducing the measurements equations, the observability of the satellite with flexible panels has been evaluated. Afterward, the attitude of the satellite body and deformation of the flexible panels have been estimated by EKF (Extended Kalman Filter) as well as UKF (Unscented Kalman Filter). The results show that the estimations using UKF are... 

    Autonomous Orbit Estimation for Regional Navigation Satellites

    , M.Sc. Thesis Sharif University of Technology Memaran, Mohsen (Author) ; Asadian, Nima (Supervisor)
    Abstract
    In this thesis, autonomous orbit estimation of regional navigation satellites has been investigated. Estimation of satellite orbit is an integral part of satellite navigation, which may be executed via assistance of ground station. As the satellite is exposed to the ground station view, range, direction and rate of range is measured by mean of ranging instrumentation relative to ground reference, hence the precise position is calculated. In this thesis a set of satellites are investigated in a unique structure called constellation with the purpose of navigation. The occurrence which is likely to happen in this condition, is the failure of ground station under certain circumstances or losing... 

    Distributed Cardiovascular System Modeling

    , M.Sc. Thesis Sharif University of Technology Khani, Mehrdad (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    Simulation of cardiovascular system functionality during various physiological conditions is essential at different diagnostic and clinical levels. A first step in studying the roots of cardiovascular diseases and abnormal activity is to study a practical yet complete model of the cardiovascular system. In this thesis we introduced a new approach for defining the distributed model of the cardiovascular system. Initially, we chose an appropriate subsystem, namely Arch of Aorta, and proposed a distributed model for it. The elements of the proposed model were nonlinear RLC elements that simulate resistance, blood viscosity and vessel elasticity respectively. To minimize the system complexity,... 

    Mobile Robot Navigation and Localization in the Presence of Hurdles in Cluttered Environment Using Fuzzy Control and Kalman Filter

    , M.Sc. Thesis Sharif University of Technology Khosravi, Hamed (Author) ; Khayyat, Ali Akbar (Supervisor)
    Abstract
    In this thesis, in order to improve the performance of the mobile robot navigation, a Fuzzy approach is used for making a safe path in the cluttered environment with hurdles in the work space of the robot. To this end, based on data collected from instantaneous location of the robot and location of the robot, heuristic rules are extracted. Also, in order to obtain optimal data fusion of the sensors, Kalman filter is used to localize the robot. In this regards, by using the kinematics of the robot and supposing the white noise in the process and measurements, the position and orientation of the mobile robot are estimated in a real-time and adaptive manner  

    Subsurface characterization with localized ensemble Kalman filter employing adaptive thresholding

    , Article Advances in Water Resources ; Vol. 69, issue , 2014 , p. 181-196 Delijani, E. B ; Pishvaie, M. R ; Boozarjomehry, R. B ; Sharif University of Technology
    Abstract
    Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure leading to incorrect or probable divergence of updated realizations. In this paper, a universal/adaptive thresholding method is presented to remove and/or mitigate spurious correlation problem in the forecast covariance matrix. This method is, then, extended to regularize Kalman gain directly. Four different thresholding functions have been considered... 

    Design of LQG/LTR controller for attitude control of geostationary satellite using reaction wheels

    , Article 2013 9th IEEE Vehicle Power and Propulsion Conference, IEEE VPPC 2013 ; N: 6671729 , 2013 , Pages 411-415 ; 9781479907205 (ISBN) Kosari, A ; Peyrovani, M ; Fakoor, M ; Pishkenari, H. N
    IEEE Computer Society  2013
    Abstract
    In this paper, LQG/LTR controller is designed for attitude control of the geostationary satellite at nominal mode. Usage actuator is the reaction wheel and control torque is determined by the LQR regulator. LQR controller signal has good performance, if all states are considered in feedback, but does not include model and sensors noises. Usage sensors are sun and earth sensors and EKF is used for estimation of noisy states. Then, LQG and LQG/LTR controllers are designed based on the estimated states, and are compared with LQR controller. The results show that robustness and performance of LQG/LTR are better than LQG and its control overshoot is smaller than LQR. The term that is provided in... 

    ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2012 , Pages 2897-2900 ; 1557170X (ISSN) ; 9781424441198 (ISBN) Akhbari, M ; Shamsollahi, M. B ; Jutten, C ; Coppa, B ; Sharif University of Technology
    2012
    Abstract
    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an... 

    Design and implementation of an improved real-time tracking system for navigation surgery by fusion of optical and inertial tracking methods

    , Article Applied Mechanics and Materials ; Volume 186 , 2012 , Pages 273-279 ; 16609336 (ISSN) ; 9783037854440 (ISBN) Soroush, A ; Farahmand, F ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    The fusion of the optical and inertial tracking systems seems an attractive solution to solve the shadowing problem of the optical tracking systems, and remove the time integration troubles of the inertial sensors. We developed a fusion algorithm for this purpose, based on the Kalman filter, and examined its efficacy to improve the position and orientation data, obtained by each individual system. Experimental results indicated that the proposed fusion algorithm could effectively estimate the 2 seconds missing data of the optical tracker  

    Tomographical medical image reconstruction using Kalman filter technique

    , Article Proceedings - 9th IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops, ISPAW 2011 - ICASE 2011, SGH 2011, GSDP 2011, 26 May 2011 through 28 May 2011 ; May , 2011 , Pages 61-65 ; 9780769544298 (ISBN) Goliaei, S ; Ghorshi, S ; Sharif University of Technology
    2011
    Abstract
    In this paper, a Kalman filter technique which is operated in time is introduced for noise reduction on CT set of projections to reconstruct medical images. The experiments were done on medical image of kidneys and the simulated projections are captured by CT scanner. Evaluation results indicated that as the number of projections increase in the collected ray sums corrupted by noise the quality of reconstructed image becomes better in terms of contrast and transparency. However, for the comparison issue, the same conditions are applied for reconstruction of medical image in frequency domain using filter back projection technique. It observes that filter back projection technique does not... 

    A new method to improve estimation of uncertain parameters in the Ensemble Kalman filter by re-parameterization employing prior statistics correction

    , Article Journal of Natural Gas Science and Engineering ; Volume 27 , November , 2015 , Pages 247-259 ; 18755100 (ISSN) Bagherinezhad, A ; Pishvaie, M. R ; Boozarjomehry, R. B ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The Ensemble Kalman Filter (EnKF) is a Monte Carlo based method to assimilate the measurement data sequentially in time. Although, EnKF has some advantages over the other Kalman based methods to deal with non-linear and/or high dimensional reservoir models, it also suffers from deficiency in estimation of non-Gaussian parameters. In this work, we propose a re-parameterization method to handle non-Gaussian parameters via Ensemble Kalman Filter framework. For this purpose, concept of cumulative distribution function transformation has been used. In addition, the statistics of prior information have been aggregated in the state vector in order to capture the prior uncertainties of non-Gaussian... 

    Distributed and decentralized state estimation in gas networks as distributed parameter systems

    , Article ISA Transactions ; Volume 58 , September , 2015 , Pages 552-566 ; 00190578 (ISSN) Ahmadian Behrooz, H ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2015
    Abstract
    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline...