Loading...
Search for: kalman-filters
0.033 seconds
Total 273 records

    Comparison of ECG fiducial point extraction methods based on dynamic bayesian network

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 95-100 ; 9781509059638 (ISBN) Akhbari, M ; Shamsollahi, M. B ; Jutten, C ; Sharif University of Technology
    Abstract
    Cardiovascular diseases are one of the major causes of mortality in humans. One way to diagnose heart diseases and abnormalities is processing of cardiac signals such as electrocardiogram (ECG) signal. In many ECG analysis, location of peak, onset and offset of ECG waves must be extracted as a preprocessing step. These points are called ECG fiducial points (FPs) and convey clinically useful information. In this paper, we compare some FP extraction methods including three methods proposed recently by our research team. These methods are based on extended Kalman filter (EKF), hidden Markov model (HMM) and switching Kalman filter (SKF). Results are given for ECG signals of QT database. For all... 

    ECG fiducial point extraction using switching Kalman filter

    , Article Computer Methods and Programs in Biomedicine ; Volume 157 , 2018 , Pages 129-136 ; 01692607 (ISSN) Akhbari, M ; Montazeri Ghahjaverestan, N ; Shamsollahi, M. B ; Jutten, C ; Sharif University of Technology
    Elsevier Ireland Ltd  2018
    Abstract
    In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called “switch” is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and... 

    Distributed and decentralized state estimation in gas networks as distributed parameter systems

    , Article ISA Transactions ; Volume 58 , September , 2015 , Pages 552-566 ; 00190578 (ISSN) Ahmadian Behrooz, H ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2015
    Abstract
    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline... 

    Modeling and state estimation for gas transmission networks

    , Article Journal of Natural Gas Science and Engineering ; Volume 22 , 2015 , Pages 551-570 ; 18755100 (ISSN) Ahmadian Behrooz, H ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, a non-isothermal model of natural gas in pipelines including mass, momentum and energy balance equations are used as model equations for modeling and state estimation in gas pipeline systems. It is shown that differential equations describing the dynamic behavior of a high-pressure and long-distance gas transmission network (GTN) can be solved efficiently using the orthogonal collocation method. The issues corresponding to the presence of discontinuities in the dynamic model is substantially discussed and studied. The non-isothermal model of a GTN can experience discontinuities during transient operations, which causes challenges in simulation and state estimation in this... 

    Novel nested saturated feedback scheme for CLOS guidance via cubature Kalman filter

    , Article 25th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2018, 28 May 2018 through 30 May 2018 ; 2018 , Pages 1-6 ; 9785919950578 (ISBN) Ahi, B ; Haeri, M ; American Institute of Aeronautics and Astronautics (AIAA); et al.; Institute of Electrical and Electronics Engineers - Aerospace and Electronic Systems Society (IEEE AESS); International Public Association - Academy of Navigation and Motion Control (ANMC); National Research University ITMO; Russian Foundation for Basic Research ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    To achieve an exact three-dimensional command to line of sight (CLOS) guidance law, a novel control scheme comprising feed-forward terms (to exactly compensate known kinematics) accompanied by an adaptive nested saturated feedback strategy is presented. A square-root cubature Kalman filter is designed as the CLOS non-linear guidance filter. Performance of the proposed guidance law is compared with the augmented proportional navigation (APN), at the absence and presence of target maneuvers, autopilot dynamics and non-ideal tracking filter. Simulation results demonstrate the satisfactory performance of proposed strategy. © 2018 Concern CSRI Elektropribor, JSC  

    Novel command to line of sight guidance with practical limitations

    , Article Asian Journal of Control ; 2021 ; 15618625 (ISSN) Ahi, B ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2021
    Abstract
    In this paper, a novel scheme of command to line-of-sight guidance law regarding the outstanding practical limitations is proposed. With the aid of formulating problem in pursuer's line of sight frame, the exact feed-forward acceleration commands are derived for a general target motion in three-dimensional engagement geometry. Then, a nonlinear control scheme constructed from feed-forward terms along with a nested saturated feedback strategy is suggested. Two momentous practical limitations are considered. The first is related to existence of pursuer's acceleration saturation which is ignored in all existing solutions. The required conditions to insure the global stability are derived... 

    Novel command to line of sight guidance with practical limitations

    , Article Asian Journal of Control ; 2021 ; 15618625 (ISSN) Ahi, B ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2021
    Abstract
    In this paper, a novel scheme of command to line-of-sight guidance law regarding the outstanding practical limitations is proposed. With the aid of formulating problem in pursuer's line of sight frame, the exact feed-forward acceleration commands are derived for a general target motion in three-dimensional engagement geometry. Then, a nonlinear control scheme constructed from feed-forward terms along with a nested saturated feedback strategy is suggested. Two momentous practical limitations are considered. The first is related to existence of pursuer's acceleration saturation which is ignored in all existing solutions. The required conditions to insure the global stability are derived... 

    Practical distributed maneuvering target tracking using delayed information of heterogeneous unregistered sensors

    , Article Signal Processing ; Volume 193 , 2022 ; 01651684 (ISSN) Ahi, B ; Haeri, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Registration is the most consequential topic to be dealt with in a multi-sensor tracking system. On the other hand, providing satisfactory target acceleration estimation would enhance the performance of a ground-based air defense system encountering a maneuvering target. The main novelty of the present work is addressing a new scheme to solve the registration problem in a distributed network along with estimating accurate target acceleration, simultaneously. The details of coping with three common kinds of measurement, attitude, and location biases are explored concentrating on the effects of attitude bias as the main error source from the practical viewpoint. A modified iterated extended... 

    Novel command to line of sight guidance with practical limitations

    , Article Asian Journal of Control ; Volume 24, Issue 3 , 2022 , Pages 1426-1436 ; 15618625 (ISSN) Ahi, B ; Haeri, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this paper, a novel scheme of command to line-of-sight guidance law regarding the outstanding practical limitations is proposed. With the aid of formulating problem in pursuer's line of sight frame, the exact feed-forward acceleration commands are derived for a general target motion in three-dimensional engagement geometry. Then, a nonlinear control scheme constructed from feed-forward terms along with a nested saturated feedback strategy is suggested. Two momentous practical limitations are considered. The first is related to existence of pursuer's acceleration saturation which is ignored in all existing solutions. The required conditions to insure the global stability are derived... 

    Accuracy improvement of GPS/INS navigation system using extended kalman filter

    , Article 6th International Conference on Control, Instrumentation and Automation, ICCIA 2019, 30 October 2019 through 31 October 2019 ; 2019 ; 9781728158150 (ISBN) Abbasi, P ; Haeri, M ; Iranian Society of Instrumentation and Control Engineers; Smart/Micro Grids Research Center; University of Kurdistan ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Inertial navigation is a method for determining position and orientation of a vehicle, which operates according to Newton's laws of motion. Due to continual increase of output error because of measurement noise, bias, misalignment and so on, one may need one or more additional navigation systems to improve accuracy in long-Term navigation. In this paper, the error compensation based on GPS/INS data fusion algorithm is studied. Then, by designing a DSP processor-based hardware, GPS and INS data are recorded and GPS/INS data fusion algorithm is implemented. Results indicate that the accuracy of the positioning is improved and position, velocity, and orientation errors are confined to a limited... 

    A motion capture algorithm based on inertia-Kinect sensors for lower body elements and step length estimation

    , Article Biomedical Signal Processing and Control ; Volume 64 , 2021 ; 17468094 (ISSN) Abbasi, J ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Motion capture is a process that movements of living organisms like human or objects are captured and the results are processed for the desired applications. These applications are in rehabilitation, sports, film industry and etc. There are many techniques and instruments for motion capture that optical camera systems are the most accurate ones. But these cameras are high cost and limited to labs. Some sensors like Inertial Measurement Units (IMU) and recently, Kinect cameras have been considered by many researchers because these are low cost and easy to use. But problems like bias, accumulated error and occlusion make them look for improvements. Fusion algorithms are one of the best methods... 

    A motion capture algorithm based on inertia-Kinect sensors for lower body elements and step length estimation

    , Article Biomedical Signal Processing and Control ; Volume 64 , 2021 ; 17468094 (ISSN) Abbasi, J ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Motion capture is a process that movements of living organisms like human or objects are captured and the results are processed for the desired applications. These applications are in rehabilitation, sports, film industry and etc. There are many techniques and instruments for motion capture that optical camera systems are the most accurate ones. But these cameras are high cost and limited to labs. Some sensors like Inertial Measurement Units (IMU) and recently, Kinect cameras have been considered by many researchers because these are low cost and easy to use. But problems like bias, accumulated error and occlusion make them look for improvements. Fusion algorithms are one of the best methods... 

    A memory-based filter for long-term error de-noising of MEMS-Gyros

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 71 , 2022 ; 00189456 (ISSN) Abbasi, J ; Hashemi, M ; Alasty, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The navigation algorithms which use inertial measurement units (IMUs), such as inertial navigation systems (INSs), always suffer from intrinsic accumulated errors. Bias in gyros induces a significant drift in navigation output especially when micro-electro-mechanical sensor (MEMS) type is used. This error has high-and low-frequency components. De-noising of the long-term error (LTE) (the low-frequency component) is more challenging due to undeterministic behavior and overlapping with carrier motion in the low-frequency band. In this article, a method for de-noising of long-term MEMS-based gyro is presented. In this approach, an auto-regressive (AR) model for the LTE is developed which is...