Loading...
Search for: lagrangian
0.007 seconds
Total 151 records

    The effect of seasonal variation in precipitation and evapotranspiration on the transient travel time distributions

    , Article Advances in Water Resources ; Volume 142 , 2020 Rahimpour Asenjan, M ; Danesh Yazdi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Precipitation (P), plant water use, and evaporation from the soil surface control the travel time of streamflow (Q) and evapotranspiration (ET) in a complex way. However, the impact of soil moisture and energy availability on the travel time distribution (TTD) of evaporated and transpired waters are yet less understood. In this study, we investigate how the seasonal variability of P and ET in terms of phase shift and rate influences the temporal dynamics of TTDs. To this end, we choose four contrasting climate types described as in-phase P and ET, out-of-phase P and ET, year-round constant P with seasonal ET, and year-round constant ET with seasonal P. We use a physically-based hydrological... 

    A three-invariant hardening plasticity for numerical simulation of powder forming processes via the arbitrary Lagrangian-Eulerian FE model

    , Article International Journal for Numerical Methods in Engineering ; Volume 66, Issue 5 , 2006 , Pages 843-877 ; 00295981 (ISSN) Khoei, A. R ; Azami, A. R ; Anahid, M ; Lewis, R. W ; Sharif University of Technology
    2006
    Abstract
    In this paper, a three-invariant cap plasticity model with an isotropic hardening rule is presented for numerical simulation of powder compaction processes. A general form is developed for single-cap plasticity which can be compared with some common double-surface plasticity models proposed for powders in literature. The constitutive elasto-plastic matrix and its components are derived based on the definition of yield surface, hardening parameter and non-linear elastic behaviour, as function of relative density of powder. Different aspects of the new single plasticity are illustrated by generating the classical plasticity models as special cases of the proposed model. The procedure for... 

    Non-linear finite element implementation of micropolar hypo-elastic materials

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 197, Issue 49-50 , 15 September , 2008 , Pages 4149-4159 ; 00457825 (ISSN) Ramezani, S ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    2008
    Abstract
    In this paper, updated Lagrangian finite element formulations for large elastic deformation of micropolar hypo-elastic materials are presented. Using representation theorems of tensor functions, the general form of the constitutive equations for the micropolar hypo-elastic materials model are presented. The finite element formulations are based on the general form of the micropolar hypo-elastic constitutive equations in conjunction with Jaumann rate and a new rate called gyration rate. Gyration rate describes the deformation of the material in view of an observer attached to the micro-structure. An incrementally objective stress and couple stress update procedure is developed and its... 

    A three dimensional simulation of spray cooling and its evaporating liquid film generated on patterned surfaces

    , Article International Journal of Multiphase Flow ; Volume 155 , 2022 ; 03019322 (ISSN) Zeraatkardevin, A ; Jowkar, S ; Morad, M. R ; Shen, X ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Liquid impingement cooling in the form of jet or spray is an appropriate method to remove heat from small surfaces progressively utilized in industry. In this study, numerical simulations are conducted to investigate the effect of surface structure on heat transfer characteristics. Five different three-dimensional structured surfaces are investigated using Euler-Lagrangian approach. The effect of surface structures is discussed on the liquid film thickness, the liquid film velocity, and the heat flux with its uniformity for a given spray and temperature characteristics. The results show that the convective heat transfer strongly depends on both liquid film thickness and velocity. While the... 

    Three dimensional heat transfer modeling of gas-solid flow in a pipe under various inclination angles

    , Article Powder Technology ; Vol. 262, Issue. 1 , 2014 , pp. 223-232 ; ISSN: 0032-5910 Pishvar, M ; Saffar Avval, M ; Mansoori, Z ; Amirkhosravi, M ; Sharif University of Technology
    Abstract
    The turbulent heat transfer in gas-solid flows through an inclined pipe under various inclination angles is studied with constant wall heat flux. The hydrodynamic k- τ and kθ- τθ thermal two phase model is used in a lagrangian/Eulerian four way approach. The numerical results agreed reasonably with available experimental data in vertical and horizontal pipe flows. The effects of inclination angles on the flow patterns are reported. The pressure drop and Nusselt number are enhanced significantly as the inclination increases up to a certain angle. The mass loading ratio has influence on the optimal inclination angle. With increasing loading ratio, the optimal inclination angle of maximum... 

    Buckling analysis of multilayered functionally graded composite cylindrical shells

    , Article Applied Mechanics and Materials ; Volume 108 , 2012 , Pages 74-79 ; 16609336 (ISSN) ; 9783037852729 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    In this paper, the buckling analysis of a multilayered composite cylindrical shell which volume fraction of its fiber varies according to power law in longitudinal direction, due to applied compressive axial load is studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fiber reinforced functionally graded composite. Strain displacement relations employed are based on Reissner-Naghdi-Berry's shell theory. The displacement finite element model of the equilibrium equations is derived by employing weak form formulation. The Lagrangian shape function for in-plane displacements and Hermitian shape function for displacement in normal direction to... 

    The genetic algorithm approach for shape optimization of powder compaction processes considering contact friction and cap plasticity models

    , Article Engineering Computations (Swansea, Wales) ; Volume 27, Issue 3 , 2010 , Pages 322-353 ; 02644401 (ISSN) Khoei, A. R ; Keshavarz, Sh ; Khaloo, A. R ; Sharif University of Technology
    Abstract
    Purpose - The purpose of this paper is to present a shape optimization technique for powder forming processes based on the genetic algorithm approach. The genetic algorithm is employed to optimize the geometry of component based on a fixed-length vector of design variables representing the changes in nodal coordinates. The technique is used to obtain the desired optimal compacted component by changing the boundaries of component and verifying the prescribed constraints. Design/methodology/approach - The numerical modeling of powder compaction simulation is applied based on a large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite... 

    A Lagrangian relaxation for a fuzzy random EPQ Problem with Shortages and Redundancy Allocation: Two Tuned Meta-heuristics

    , Article International Journal of Fuzzy Systems ; Volume 20, Issue 2 , 2018 , Pages 515-533 ; 15622479 (ISSN) Sadeghi, J ; Niaki, S. T. A ; Malekian, M. R ; Wang, Y ; Sharif University of Technology
    Springer Berlin Heidelberg  2018
    Abstract
    This paper develops an economic production quantity model for a multi-product multi-objective inventory control problem with fuzzy-stochastic demand and backorders. In this model, the annual demand is represented by trapezoidal fuzzy random numbers. The centroid defuzzification and the expected value methods are applied to defuzzify and make decisions in a random environment. In the case where the warehouse space is limited, the Lagrangian relaxation procedure is first employed to determine the optimal order and the maximum backorder quantities of the products such that the total inventory cost is minimized. The optimal solution obtained by the proposed approach is compared with that... 

    Numerical simulation of nano-carbon deposition in the thermal decomposition of methane

    , Article International Journal of Hydrogen Energy ; Volume 33, Issue 23 , December , 2008 , Pages 7027-7038 ; 03603199 (ISSN) Homayonifar, P ; Saboohi, Y ; Firoozabadi, B ; Sharif University of Technology
    2008
    Abstract
    A comparison of various hydrogen production processes indicates that the thermal decomposition of methane (TDM) provides an attractive option from both economical and technical points of view. The main problem for this process is the deposition of the nano-carbon particles on the reactor wall (or catalyst surface). This research concentrates on the numerical simulation of the TDM process without use of a catalyst to find a technique that decreases the carbon accumulation in a tubular reactor. In this model, the produced carbon particles are tracked with the Lagrangian method under thermophoretic, Brownian, van der Waals, Basset, drag, lift, gravity, pressure and virtual mass forces. In... 

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of...