Loading...
Search for: laminate-composites
0.006 seconds
Total 104 records

    Vibration behavior of laminated composite beams integrated with magnetorheological fluid layer

    , Article Journal of Mechanics ; Volume 33, Issue 4 , 2017 , Pages 417-425 ; 17277191 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    Vibration behavior of adaptive laminated composite beams integrated with magnetorheological (MR) fluid layer has been investigated using layerwise displacement theory. In most of the existing studies on the adaptive laminated beams with MR fluids, shear strain across the thickness of magnetorheological (MR) layer has been assumed a constant value, resulting in a constant shear stress in MR layer. However, due to the high shear deformation pattern inside MR layer, this assumption is not adequate to accurately describe the shear strain and stress in MR fluid layer. In this work a modified layerwise theory is employed to develop a Finite Element Model (FEM) formulation to simulate the laminated... 

    Experimental works on dynamic behavior of laminated composite beam incorporated with magneto-rheological fluid under random excitation

    , Article ACM International Conference Proceeding Series, 8 February 2017 through 12 February 2017 ; Volume Part F128050 , 2017 , Pages 156-161 ; 9781450352802 (ISBN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Association for Computing Machinery  2017
    Abstract
    Laminated composite structures are widely being used in modern industries particularly robot arms, aerospace and wind turbine blades where the structures mainly exposed to harsh random vibration and in turn, leads to unpredicted failure. Adding Magneto-rheological (MR) fluids in such structures may significantly improve their dynamic response. In the present work, the vibration response of laminated composite beams filled with MR fluids (MR laminated beam) under random loading has been investigated using experimental as well as simulation approaches. Finite Element Model (FEM) has been utilized to simulate the vibration response under random loading. An in-house set-up has been designed to... 

    A layerwise finite element for geometrically nonlinear analysis of composite shells

    , Article Composite Structures ; Volume 186 , 2018 , Pages 355-364 ; 02638223 (ISSN) Hosseini Kordkheili, S. A ; Soltani, Z ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This work aims to develop a nonlinear layerwise shell element formulation for shear-deformable laminated composite plate and shell structures. The element is formulated based on a zigzag theory in presence of individual local coordinates in the thickness direction for separate layers. In order to properly employ the zigzag theory, the considered local coordinates have different ranges of variation for middle, upper and lower layers. Using Mindlin-Reissner theory a convenient displacement field is derived for each layer and an ordered algorithm is adapted to calculate increments in the director vector of each layer due to relative finite rotations of its adjacent layers. Employing this shear... 

    Dynamic instability characteristics of advanced grid stiffened conical shell with laminated composite skins

    , Article Journal of Sound and Vibration ; Volume 488 , 2020 Bohlooly, M ; Kouchakzadeh, M. A ; Mirzavand, B ; Noghabi, M ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Dynamical instability characteristics of sandwich truncated conical shell are investigated. The three-layered shell is composed of advanced grid stiffened core and laminated composite skins. The core maybe made of three different fiber paths. The conical shell with simply-supported ends is subjected to two different types of time-dependent axial compressions. The equations of motion and compatibility are derived by considering Kirchhoff-Love assumptions and von Karman relations. The solution procedure is divided to two steps. First, the terms consisting of spatial derivatives are eliminated by applying a stress function and following the Galerkin method. Second, the terms with temporal... 

    Multi-objective optimal design of stiffened laminated composite cylindrical shell with piezoelectric actuators

    , Article International Journal on Interactive Design and Manufacturing ; Volume 14, Issue 2 , January , 2020 , Pages 595-611 Khodaygan, S ; Bohlooly, M ; Sharif University of Technology
    Springer  2020
    Abstract
    The stiffeners and piezoelectric actuators are used in many aerospace structures as an auxiliary layer with laminated composites. A question then arises as to whether we can estimate the percentage of these materials in an efficient design. Due to the high computational cost, it is not easy to answer through numerical solutions. The objective of this paper is concurrently to maximize the buckling load and minimize the weight of the cylindrical shell. To reach this aim, a multi-objective optimization problem is developed based on the closed-form solutions of thermal/mechanical buckling and weight of the piezolaminated shell with eccentric/concentric stiffener. The Non-dominated Sorting... 

    Investigation of the equivalent material properties and failure stress of the re-entrant composite lattice structures using an analytical model

    , Article Composite Structures ; 2020 Veisi, H ; Farrokhabadi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, a novel theoretical model is developed, based on classical laminate theory, to predict the equivalent mechanical properties of the re-entrant lattice structures, which composed of continuous fiber reinforced composite struts. Three main mechanism of stretching, flexing and hinging are considered and a general closed-form formulation is derived to estimate the auxetic honeycomb's elastic and shear modulus as well as Poisson's ratios. In spite of previous studies in which the response of honeycomb structures is modeled using beam theory, here, each strut of unit cell is expressed as a composite laminate with orthotropic mechanical properties and classical laminate theory... 

    Natural frequencies of stiffened and unstiffened laminated composite plates

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 7 , 2007 , Pages 593-600 ; 0791843017 (ISBN) Ahmadian, M. T ; Pirbodaghi, T ; Pak, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    In this study the free vibration of laminated composite plates with and without stiffeners subjected to axial loads is carried out using finite element method. The plates are stiffened by laminated composite strip and Timoshenko beam. The plates and the strips are modeled with rectangular 9 noded isoparametric quadratic elements with three degrees of freedom per node and the Timoshenko beam is modeled with linear 2 noded isoparametric quadratic elements with 2 degrees of freedom per node. The effects of both shear deformation and rotary inertia are implemented in the modeling of plate and stiffener. The governing differential equations are obtained in terms of the mid-plane displacement... 

    Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory

    , Article Composite Structures ; Volume 92, Issue 8 , 2010 , Pages 1865-1876 ; 02638223 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    2010
    Abstract
    The dynamic response of angle-ply laminated composite plates traversed by a moving mass or a moving force is investigated. For this purpose, a finite element method based on the first-order shear deformation theory is used. Stationary and adaptive mesh techniques have been applied as two different meshing schemes. The adaptive mesh strategy is then used to avoid off-nodal position of moving mass. In this manner, the finite element mesh is continuously adapted to follow and comply with the path of moving mass. A Newmark direct integration method is employed to solve the equations of motion. Parametric study is directed to find out how different parameters like mass of the moving object as... 

    Modeling and Vibration Analysis of Laminated Composite Beam with Magneto-Rheological Fluid Segments

    , Ph.D. Dissertation Sharif University of Technology Naji, Jalil (Author) ; Behzad, Mehdi (Supervisor) ; Zabihollah, Abolghasem (Supervisor) ; Shamloo, Amir (Co-Advisor)
    Abstract
    Magnetorheological (MR) materials show variations in their rheological properties when subjected to varying magnetic fields. They have quick time response, in the order of milliseconds, and thus are potentially applicable to structures and devices when a tunable system response is required. When integrated with a structural system, they can produce higher variations in the dynamic response of the structure. In this thesis, vibration behavior of laminated-composite beam with MR Fluid is investigated.In most studies, shear strain across the thickness of MR layer has been considered as a constant value which does not precisely describe the actual shear strain field. Shear modulus of MR layer in... 

    Optimization of Full Composite Body of the Scaled Jas39 Fighter Aircraft Model Using Genetic Algorithm

    , M.Sc. Thesis Sharif University of Technology Jafari, Mohammad Amin (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Popular usage of composite materials in aerospace, civil and defense industries in the last decades has been the cause for paying more attention to optimization of composites tailoring. Due to inherent complexity of composite problems, i.e. discrete nature, complex interrelationship of design variables, existence of so many local optimum points, and etc., gradient base methods of optimization are found to be incapable and as a result using other powerful methods seems inevitable. Nowadays Genetic algorithm (GA) as an evolutionary technique is used for tackling composite problems. The success of a genetic algorithm can be quantified by estimating the cost, time required and the quality of... 

    Effects of MR Fluid on Low-Velocity Impact Response of Laminated Composite Structures

    , M.Sc. Thesis Sharif University of Technology Mortazavi, Mostafa (Author) ; Zabihollah, Abolghassem (Supervisor)
    Abstract
    During the past two decades, laminated composite structures have been used for many engineering applications, including aerospace, automotive, sport equipment and pressure vessels.
    In spite of the excellent properties of strength to weight ratio, composite structures are vulnerable to failure when subjected to impact and vibration. It is well known that impact damage may severely degrade the strength and stability of laminated composite structures. For this reason the effect of impact on composites has been a subject of extensive research.
    There are several ways of decreasing the vibration energy of structures, such as diminishing the source energy, designing structures... 

    Repairing of Metallic Pressure Fitting Using Polymer-Based Composites by Utilizing Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Shafieian, Maryam (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Billions of dollars are spent annually repairing broken or damaged pipes and fittings. The bulk of these costs relate to traditional methods used to repair and rehabilitate pipelines, such as replacing the desired part or using steel sleeves on the damaged part, this operation requires shutting down the service, which is costly. Uncertainty about the reliability and durability of existing repair methods has created the need to develop and provide a fast, safe, economical and safe way to repair pipelines and fittings. This need has been met by using the capabilities and potentials of composites, and composites have replaced traditional methods that reduce costs and time. In this project, the... 

    Numerical and Experimental Analysis of Composite and Honeycomb Sandwich Panels Fatigue Behavior

    , M.Sc. Thesis Sharif University of Technology Khodabakhshi, Mohammad Erfan (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    The use of sandwich panels has become very common in recent engineering designs when the weight of the part or structure is important and we are looking to lose weight while maintaining strength. The mechanical properties of this type of structures, including yield stress, fatigue behavior and estimation of their life, failure modes, natural frequencies and resonance phenomena, etc. are affected by various factors, including geometric and environmental factors. Fatigue is one of the most common failures in these structures. Composite materials have complex structures. In these materials, due to the viscoelastic properties, the fatigue behavior changes with changing stress, stress frequency,... 

    Microstructural evolution and fracture behavior of friction-stir-welded Al-Cu laminated composites

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 1 , 2014 , pp. 361-370 Beygi, R ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook... 

    Effect of lateral placement of ceramic and metal grains on thermal stress distribution throughout FGMS

    , Article 28th Congress of the International Council of the Aeronautical Sciences 2012, ICAS 2012 ; Volume 3 , 2012 , Pages 1878-1884 ; 9781622767540 (ISBN) Torabi, A ; Abedian, A ; Sharif University of Technology
    2012
    Abstract
    The properties of Functionally Graded Materials (FGM) are characterized by gradual variation of volume fraction of their constituents or phases over the thickness direction. They are normally ceramic in one side and metal in the other side. This kind of material has been employed as thermal barrier and also as coatings in many applications including turbine blades. Thermal stress behavior of FGMs is normally studied by simulating the material as a composite laminate where the properties ofeach layer are found by averaging the properties and volume fraction of FGM constituents through the thickness of the layer. However, it should be mentioned that the grains of FGM constituents are usually... 

    Optimal weight design of laminated composite panels with different stiffeners under buckling loads

    , Article 7th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010 ; Volume 3 , 2010 , Pages 2039-2049 ; 9781617820496 (ISBN) Badiey, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Abstract
    In the present paper, buckling behavior of a rectangular Functionally Graded Plate (FGP) under combined shear and direct loading is considered. The total potential energy is derived for a FGP in stability condition. Derivation of totalpotential function is based on the classical plate theory. Also, in-plane flexibility is considered in shear buckling analysis. It is assumed that the non-homogeneous mechanical properties of the plate graded through thickness and are described with a power function of the thickness variable. The critical buckling shear loads in conjunction with in-plane direct loads have been obtained for different ratios and power law indices of functionally graded materials... 

    Development of an accurate finite element model for N-layer MR-laminated beams using a layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-8 ; 15376494 (ISSN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Laminated composite beams incorporated with magneto-rheological fluid are being used in variety of critical applications. An N-layer magneto-rheological-laminated beam based on layerwise theory has been developed to study the dynamic characteristics. For simulation purpose, an MR-laminated beam with five layers is considered in which two layers filled with magneto-rheological and three layers are made of composite materials. The results of simulations are compared with existing layerwise, first-order shear-deformation theory and experimental tests where it shows the accuracy and functionality of the present model. The complex shear modulus of magneto-rheological fluid has been determined... 

    On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell

    , Article Engineering with Computers ; Volume 35, Issue 4 , 2019 , Pages 1375-1389 ; 01770667 (ISSN) Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer London  2019
    Abstract
    Due to rapid development of process manufacturing, composite materials with porosity have attracted commercial attention in promoting engineering applications. For this regard, in this research wave propagation-thermal characteristics of a size-dependent graphene nanoplatelet-reinforced composite (GNPRC) porous cylindrical nanoshell in thermal environment are investigated. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT). The governing equations of the laminated composite cylindrical nanoshell in thermal environment have been evolved using Hamilton’s principle and solved with the assistance of the analytical method. For the first time, wave... 

    Design and experimental development of hexapod robot with fiberglass-fibercarbon composite legs

    , Article 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, 23 October 2018 through 25 October 2018 ; 2019 , Pages 439-444 ; 9781728101279 (ISBN) Kebritchi, A ; Havashinezhadian, S ; Rostami, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Over the last few years, the universal number of legged robots has increased astonishingly in outdoor environments. In this paper, the design, and control of a new RHex robot named IRHex with innovative Fiberglass-Fiber carbon composite legs are described. IRHex is a six-legged robot-one actuator located at each hip-achieving mechanical uncomplicatedness that provides a reliable performance. In this investigation, the new material used for building IRHex legs was discovered after several tests on the effect of sequence and orientation of laminates in the composite. IRHex achieves robust locomotion using a computer board analyzing the data sent by the sensors and communicating to the ground... 

    Free-edge stresses in general composite laminates

    , Article International Journal of Mechanical Sciences ; Volume 50, Issue 10-11 , 2008 , Pages 1435-1447 ; 00207403 (ISSN) Nosier, A ; Maleki, M ; Sharif University of Technology
    2008
    Abstract
    In the present study, by starting from the reduced form of elasticity displacement field for a long flat laminate, an analytical method is developed in order to accurately calculate the interlaminar stresses near the free edges of generally laminated composite plates under extension. The constant parameter appearing in the reduced displacement field, which describes the global rotational deformation of a laminate, is appropriately obtained by employing an improved first-order shear deformation theory. The accuracy and effectiveness of the proposed first-order theory are verified by means of comparison with the results of Reddy's layerwise theory as a three-dimensional benchmark. Reddy's...