Loading...
Search for: learning
0.01 seconds

    Stacked hourglass network with a multi-level attention mechanism: where to Look for intervertebral disc labeling

    , Article 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, 27 September 2021 through 27 September 2021 ; Volume 12966 LNCS , 2021 , Pages 406-415 ; 03029743 (ISSN); 9783030875886 (ISBN) Azad, R ; Rouhier, L ; Cohen Adad, J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Labeling vertebral discs from MRI scans is important for the proper diagnosis of spinal related diseases, including multiple sclerosis, amyotrophic lateral sclerosis, degenerative cervical myelopathy and cancer. Automatic labeling of the vertebral discs in MRI data is a difficult task because of the similarity between discs and bone area, the variability in the geometry of the spine and surrounding tissues across individuals, and the variability across scans (manufacturers, pulse sequence, image contrast, resolution and artefacts). In previous studies, vertebral disc labeling is often done after a disc detection step and mostly fails when the localization algorithm misses discs or has false... 

    An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling

    , Article Engineering with Computers ; 2021 ; 01770667 (ISSN) Guo, J ; Baharvand, A ; Tazeddinova, D ; Habibi, M ; Safarpour, H ; Roco Videla, A ; Selmi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This article is the first attempt to employ deep learning to estimate the frequency performance of the rotating multi-layer nanodisks. The optimum values of the parameters involved in the mechanism of the fully connected neural network are determined through the momentum-based optimizer. The strength of the method applied in this survey comes from the high accuracy besides lower epochs needed to train the multi-layered network. It should be mentioned that the current nanostructure is modeled as a nanodisk on the viscoelastic substrate. Due to rotation, the centrifugal and Coriolis effects are considered. Hamilton’s principle and generalized differential quadrature method (GDQM) are presented... 

    Symptom prediction and mortality risk calculation for COVID-19 using machine learning

    , Article Frontiers in Artificial Intelligence ; Volume 4 , June , 2021 ; 26248212 (ISSN) Jamshidi, E ; Asgary, A ; Tavakoli, N ; Zali, A ; Dastan, F ; Daaee, A ; Badakhshan, M ; Esmaily, H ; Jamaldini, S. H ; Safari, S ; Bastanhagh, E ; Maher, A ; Babajani, A ; Mehrazi, M ; Sendani Kashi, M. A ; Jamshidi, M ; Sendani, M. H ; Rahi, J ; Mansouri, N ; Sharif University of Technology
    Frontiers Media S. A  2021
    Abstract
    Background: Early prediction of symptoms and mortality risks for COVID-19 patients would improve healthcare outcomes, allow for the appropriate distribution of healthcare resources, reduce healthcare costs, aid in vaccine prioritization and self-isolation strategies, and thus reduce the prevalence of the disease. Such publicly accessible prediction models are lacking, however. Methods: Based on a comprehensive evaluation of existing machine learning (ML) methods, we created two models based solely on the age, gender, and medical histories of 23,749 hospital-confirmed COVID-19 patients from February to September 2020: a symptom prediction model (SPM) and a mortality prediction model (MPM).... 

    A hierarchical machine learning model based on Glioblastoma patients' clinical, biomedical, and image data to analyze their treatment plans

    , Article Computers in Biology and Medicine ; Volume 150 , 2022 ; 00104825 (ISSN) Ershadi, M. M ; Rahimi Rise, Z ; Akhavan Niaki, S. T ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Aim of study: Glioblastoma Multiforme (GBM) is an aggressive brain cancer in adults that kills most patients in the first year due to ineffective treatment. Different clinical, biomedical, and image data features are needed to analyze GBM, increasing complexities. Besides, they lead to weak performances for machine learning models due to ignoring physicians' knowledge. Therefore, this paper proposes a hierarchical model based on Fuzzy C-mean (FCM) clustering, Wrapper feature selection, and twelve classifiers to analyze treatment plans. Methodology/Approach: The proposed method finds the effectiveness of previous and current treatment plans, hierarchically determining the best decision for... 

    Using metaheuristic algorithms to improve the estimation of acidity in Fuji apples using NIR spectroscopy

    , Article Ain Shams Engineering Journal ; Volume 13, Issue 6 , 2022 ; 20904479 (ISSN) Pourdarbani, R ; Sabzi, S ; Rohban, M. H ; García Mateos, G ; Paliwal, J ; Molina Martínez, J. M ; Sharif University of Technology
    Ain Shams University  2022
    Abstract
    This study focuses on the spectrochemical estimation of pH and titratable acidity (TA) of apples of Fuji variety at different stages of ripening. A novel approach is proposed for near-infrared (NIR) spectral analysis using hybrid machine learning methods that combine artificial neural networks (ANN) and metaheuristic algorithms. One hundred twenty samples were collected at three ripening stages and spectral data within two bands of NIR were extracted from each sample to predict the acidity properties. Alternatively, the 4 most effective wavelengths were also selected using a hybrid of ANN and the cultural algorithm. The experimental results prove that the models using spectral bands and the... 

    A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kouzehkanan, Z. M ; Saghari, S ; Tavakoli, S ; Rostami, P ; Abaszadeh, M ; Mirzadeh, F ; Satlsar, E. S ; Gheidishahran, M ; Gorgi, F ; Mohammadi, S ; Hosseini, R ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Accurate and early detection of anomalies in peripheral white blood cells plays a crucial role in the evaluation of well-being in individuals and the diagnosis and prognosis of hematologic diseases. For example, some blood disorders and immune system-related diseases are diagnosed by the differential count of white blood cells, which is one of the common laboratory tests. Data is one of the most important ingredients in the development and testing of many commercial and successful automatic or semi-automatic systems. To this end, this study introduces a free access dataset of normal peripheral white blood cells called Raabin-WBC containing about 40,000 images of white blood cells and color... 

    HEROHE Challenge: Predicting HER2 status in breast cancer from hematoxylin–eosin whole-slide imaging

    , Article Journal of Imaging ; Volume 8, Issue 8 , 2022 ; 2313433X (ISSN) Conde Sousa, E ; Vale, J ; Feng, M ; Xu, K ; Wang, Y ; Della Mea, V ; La Barbera, D ; Montahaei, E ; Baghshah, M ; Turzynski, A ; Gildenblat, J ; Klaiman, E ; Hong, Y ; Aresta, G ; Araújo, T ; Aguiar, P ; Eloy, C ; Polónia, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Breast cancer is the most common malignancy in women worldwide, and is responsible for more than half a million deaths each year. The appropriate therapy depends on the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor 2 (HER2) transmembrane protein, through specialized techniques, such as immunohistochemistry or in situ hybridization. In this work, we present the HER2 on hematoxylin and eosin (HEROHE) challenge, a parallel event of the 16th European Congress on Digital Pathology, which aimed to predict the HER2 status in breast cancer based only on hematoxylin–eosin-stained tissue samples, thus avoiding specialized techniques. The... 

    EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms

    , Article Frontiers in Physiology ; Volume 13 , 2022 ; 1664042X (ISSN) Zangeneh Soroush, M ; Tahvilian, P ; Nasirpour, M. H ; Maghooli, K ; Sadeghniiat Haghighi, K ; Vahid Harandi, S ; Abdollahi, Z ; Ghazizadeh, A ; Jafarnia Dabanloo, N ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Blind source separation (BSS) methods have received a great deal of attention in electroencephalogram (EEG) artifact elimination as they are routine and standard signal processing tools to remove artifacts and reserve desired neural information. On the other hand, a classifier should follow BSS methods to automatically identify artifactual sources and remove them in the following steps. In addition, removing all detected artifactual components leads to loss of information since some desired information related to neural activity leaks to these sources. So, an approach should be employed to detect and suppress the artifacts and reserve neural activity. This study introduces a novel method... 

    Virtual reservoir computer using an optical resonator

    , Article Optical Materials Express ; Volume 12, Issue 3 , 2022 , Pages 1140-1153 ; 21593930 (ISSN) Boshgazi, S ; Jabbari, A ; Mehrany, K ; Memarian, M ; Sharif University of Technology
    The Optical Society  2022
    Abstract
    Reservoir computing is a machine learning approach that enables us to use recurrent neural networks without involving the complexity of training algorithms and make hardware implementation possible. We present a novel photonic architecture of a reservoir computer that employs a nonlinear node and a resonator to implement a virtual recurrent neural network. This resonator behaves as an echo generator component that substitutes the delay line in delaybased reservoir computers available in the literature. The virtual neural network formed in our implementation is fundamentally different from the delay-based reservoir computers. Different virtual architectures based on the FSR and the Finesse of... 

    Predicting human behavior in size-variant repeated games through deep convolutional neural networks

    , Article Progress in Artificial Intelligence ; Volume 11, Issue 1 , 2022 , Pages 15-28 ; 21926352 (ISSN) Vazifedan, A ; Izadi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    We present a novel deep convolutional neural network (DCNN) model for predicting human behavior in repeated games. The model is the first deep neural network presented on repeated games that is able to be trained on games with arbitrary size of payoff matrices. Our neural network takes the players’ payoff matrices and the history of the play as input, and outputs the predicted action picked by the first player in the next round. To evaluate the model’s performance, we apply it to some experimental games played by humans and measure the rate of correctly predicted actions. The results show that our model obtains an average prediction accuracy of about 63% across all the studied games, which... 

    A review on state-of-the-art applications of data-driven methods in desalination systems

    , Article Desalination ; Volume 532 , 2022 ; 00119164 (ISSN) Behnam, P ; Faegh, M ; Khiadani, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The substitution of conventional mathematical models with fast and accurate modeling tools can result in the further development of desalination technologies and tackling the need for freshwater. Due to the great capability of data-driven methods in analyzing complex systems, several attempts have been made to study various desalination systems using data-driven approaches. In this state-of-the-art review, the application of various artificial intelligence and design of experiment data-driven methods for analyzing different desalination technologies have been thoroughly investigated. According to the applications of data-driven methods in the field of desalination, the reviewed... 

    Non-Destructive estimation of physicochemical properties and detection of ripeness level of apples using machine vision

    , Article International Journal of Fruit Science ; Volume 22, Issue 1 , 2022 , Pages 628-645 ; 15538362 (ISSN) Sabzi, S ; Nadimi, M ; Abbaspour Gilandeh, Y ; Paliwal, J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Nondestructive estimation of physicochemical properties, post-harvest physiology, and level of ripeness of fruits is essential to their automated harvesting, sorting, and handling. Recent research efforts have identified machine vision systems as a promising noninvasive nondestructive tool for exploring the relationship between physicochemical and appearance characteristics of fruits at various ripening levels. In this regard, the purpose of the current study is to provide an intelligent algorithm for estimating two physical properties including firmness, and soluble solid content (SSC), three chemical properties viz. starch, acidity, and titratable acidity (TA), as well as detection of the... 

    Optimized U-shape convolutional neural network with a novel training strategy for segmentation of concrete cracks

    , Article Structural Health Monitoring ; 2022 ; 14759217 (ISSN) Mousavi, M ; Bakhshi, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Crack detection is a vital component of structural health monitoring. Several computer vision-based studies have been proposed to conduct crack detection on concrete surfaces, but most cases have difficulties in detecting fine cracks. This study proposes a deep learning-based model for automatic crack detection on the concrete surface. Our proposed model is an encoder–decoder model which uses EfficientNet-B7 as the encoder and U-Net’s modified expansion path as the decoder. To overcome the challenges in the detection of fine cracks, we trained our model with a new training strategy on images extracted from an open-access dataset and achieved a 96.98% F1 score for unseen test data. Moreover,... 

    Predicting the effects of environmental parameters on the spatio-temporal distribution of the droplets carrying coronavirus in public transport – A machine learning approach

    , Article Chemical Engineering Journal ; Volume 430 , 2022 ; 13858947 (ISSN) Mesgarpour, M ; Najm Abad, J. M ; Alizadeh, R ; Wongwises, S ; Doranehgard, M. H ; Jowkar, S ; Karimi, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Human-generated droplets constitute the main route for the transmission of coronavirus. However, the details of such transmission in enclosed environments are yet to be understood. This is because geometrical and environmental parameters can immensely complicate the problem and turn the conventional analyses inefficient. As a remedy, this work develops a predictive tool based on computational fluid dynamics and machine learning to examine the distribution of sneezing droplets in realistic configurations. The time-dependent effects of environmental parameters, including temperature, humidity and ventilation rate, upon the droplets with diameters between 1 and 250μm are investigated inside a... 

    Speed/accuracy trade-off between the habitual and the goal-directed processes

    , Article PLoS Computational Biology ; Volume 7, Issue 5 , 2011 ; 1553734X (ISSN) Keramati, M ; Dezfouli, A ; Piray, P ; Sharif University of Technology
    2011
    Abstract
    Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we... 

    Learning improvement by using matlab simulator in advanced electrical machine laboratory

    , Article RPC 2010 - 1st Russia and Pacific Conference on Computer Technology and Applications, 6 September 2010 through 9 September 2010 ; 2010 , Pages 107-116 Zeinolabedin Moussavi, A. S ; Fazly, M ; Sharif University of Technology
    Abstract
    This paper presents how can teach complicated problems in electrical engineering subjects (electrical machines) by using simulators such as MATLAB/SIMULINK. Simulation of direct vector control of induction machine (IM) drive on the rotor flux direction with composite model flux observer can improve electrical machine teaching-learning procedure for graduated and under graduated levels. In the indirect vector control of IM, current reference values are used for estimation angle of the rotor flux space vector (ARFSV), however using current reference values instead of current real values can decrease accuracy of ARFSV. In the direct vector control, current real values (current feedback)... 

    Simultaneous colorimetric determination of dopamine and ascorbic acid based on the surface plasmon resonance band of colloidal silver nanoparticles using artificial neural networks

    , Article Analytical Methods ; Volume 2, Issue 9 , 2010 , Pages 1263-1269 ; 17599660 (ISSN) Hormozi Nezhad, M. R ; Tashkhourian, J ; Khodaveisi, J ; Khoshi, M. R ; Sharif University of Technology
    2010
    Abstract
    A new method for simultaneous determination of dopamine (DA) and ascorbic acid (ASC) is proposed. The method is based on the reaction of dopamine and ascorbic acid with the oxidizing agent (silver nitrate) in the presence of PVP (as a stabilizer) and the formation of silver nanoparticles in a slightly basic medium. Spectrophotometry is used to monitor the changes of the surface plasmon resonance (SPR) band at a maximum wavelength of silver nanoparticles (440 nm) vs. time. Three-layered feed-forward artificial neural networks (ANN) trained by back propagation learning algorithm is used to model the relationship between absorbance and concentration to quantify analyte in mixtures under optimum... 

    Neuroplasticity in dynamic neural networks comprised of neurons attached to adaptive base plate

    , Article Neural Networks ; Volume 75 , 2016 , Pages 77-83 ; 08936080 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a learning algorithm is developed for Dynamic Plastic Continuous Neural Networks (DPCNNs) to improve their learning of highly nonlinear time dependent problems. A DPCNN is comprised of a base medium, which is nonlinear and plastic, and a number of neurons that are attached to the base by wire-like connections similar to perceptrons. The information is distributed within DPCNNs gradually and through wave propagation mechanism. While a DPCNN is adaptive due to its connection weights, the material properties of its base medium can also be adjusted to improve its learning. The material of the medium is plastic and can contribute to memorizing the history of input-response similar... 

    A new dynamic cellular learning automata-based skin detector

    , Article Multimedia Systems ; Volume 15, Issue 5 , 2009 , Pages 309-323 ; 09424962 (ISSN) Abin, A. A ; Fotouhi, M ; Kasaei, S ; Sharif University of Technology
    2009
    Abstract
    Skin detection is a difficult and primary task in many image processing applications. Because of the diversity of various image processing tasks, there exists no optimum method that can perform properly for all applications. In this paper, we have proposed a novel skin detection algorithm that combines color and texture information of skin with cellular learning automata to detect skin-like regions in color images. Skin color regions are first detected, by using a committee structure, from among several explicit boundary skin models. Detected skin-color regions are then fed to a texture analyzer which extracts texture features via their color statistical properties and maps them to a skin... 

    An efficient hardware implementation for a motor imagery brain computer interface system

    , Article Scientia Iranica ; Volume 26, Issue 1 , 2019 , Pages 72-94 ; 10263098 (ISSN) Malekmohammadi, A ; Mohammadzade, H ; Chamanzar, A ; Shabany, M ; Ghojogh, B ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Brain Computer Interface (BCI) systems, which are based on motor imagery, enable humans to command artificial peripherals by merely thinking about the task. There is a tremendous interest in implementing BCIs on portable platforms, such as Field Programmable Gate Arrays (FPGAS) due to their low-cost, low-power and portability characteristics. This article presents the design and implementation of a Brain Computer Interface (BCI) system based on motor imagery on a Virtex-6 FPGA. In order to design an accurate algorithm, the proposed method avails statistical learning methods such as Mutual Information (MI), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). It also uses...