Loading...
Search for: magnetism
0.01 seconds
Total 1521 records

    Excitation current optimization of fluxgate magnetometers for active magnetic shielding of SQUID-based magnetocardiography system

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 30, Issue 8 , 2017 , Pages 2323-2328 ; 15571939 (ISSN) Shanehsazzadeh, F ; Kalantari, N ; Jabbari, T ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    In order to achieve stable operation for a developed high-Tc SQUID-based magnetocardiography system, a two-stage active magnetic shielding technique is implemented. This technique is based on a combination of fluxgate and high-Tc SQUID magnetometers feedback loops. While two YBCO rf SQUIDs in a gradiometric configuration are used at liquid Nitrogen temperature as the main sensors for the heart signal detection and low-amplitude noise signals cancellation in one stage, a fluxgate is used to cancel large far-field environmental noise in the other stage feedback loop. The fluxgate sensors working in the fundamental mode under the optimized bias conditions have white noise levels less than 10... 

    Energy harvesting from structural vibrations of magnetic shape memory alloys

    , Article Applied Physics Letters ; Volume 110, Issue 10 , 2017 ; 00036951 (ISSN) Askari Farsangi, M. A ; Cottone, F ; Sayyaadi, H ; Zakerzadeh, M. R ; Orfei, F ; Gammaitoni, L ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating... 

    Reduced graphene oxide: An alternative for Magnetic Resonance Imaging contrast agent

    , Article Materials Letters ; Volume 233 , 2018 , Pages 363-366 ; 0167577X (ISSN) Enayati, M ; Nemati, A ; Zarrabi, A ; Shokrgozar, M. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Graphene oxide (GO) has never been considered as a Magnetic Resonance Imaging (MRI) contrast agent since it was conceived as a diamagnetic material. There is a possibility that introduction of structural defects or manipulation of oxygen functionalities in GO change its magnetic response and provided a chance for GO to be a contrast agent for MRI. For this purpose, reduced graphene oxide (RGO) was treated by irradiation and annealing procedures. The study on the magnetic properties of the samples confirmed that the competition between the structural defects and oxygen functionalities to magnetic moments determines the magnetism in RGO. © 2018  

    Position control of a wheel-based miniature magnetic robot using neuro-fuzzy network

    , Article Robotica ; Volume 40, Issue 11 , 2022 , Pages 3895-3910 ; 02635747 (ISSN) Salehi, M ; Pishkenari, H. N ; Zohoor, H ; Sharif University of Technology
    Cambridge University Press  2022
    Abstract
    Untethered small-scale robots can accomplish tasks which are not feasible by conventional macro robots. In the current research, we have designed and fabricated a miniature magnetic robot actuated by an external magnetic field. The proposed robot has two coaxial wheels and one magnetic dipole which is capable of rolling and moving on the surface by variation in the direction of magnetic field. To generate the desired magnetic field, a Helmholtz electromagnetic coil is manufactured. To steer the robot to the desired position, at first the robot dynamics is investigated, and subsequently a controller based on a neuro-fuzzy network has been designed. Finally, the proposed controller is... 

    Environmental noise cancellation for high-TC SQUID-based magnetocardiography systems using a bistage active shield

    , Article IEEE Transactions on Applied Superconductivity ; 2017 ; 10518223 (ISSN) Shanehsazzadeh, F ; Kalantari, N ; Sarreshtedari, F ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    An active noise cancellation method is proposed for superconducting quantum interference devices (SQUID)-based magnetocardiography systems working out of magnetically shielded rooms. Using YBCO high-Tc rf-SQUID magnetometers as magnetic field sensors, an active shielding system was implemented based on this method. This method incorporates two different shielding frequency regimes of operation simultaneously. This is because the unwanted background magnetic field signals range from very low frequencies up to high frequencies with a wide range of amplitudes at the upper and lower frequency spectra. Therefore, the shielding system is designed in a bistage configuration, and each stage covers... 

    Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 314-323 ; 03048853 (ISSN) Fadaei, F ; Shahrokhi, M ; Molaei Dehkordi, A ; Abbasi, Z ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source... 

    Facile fabrication and characterization of amino-functionalized Fe 3O4 cluster@SiO2 core/shell nanocomposite spheres

    , Article Materials Research Bulletin ; Volume 48, Issue 6 , 2013 , Pages 2023-2028 ; 00255408 (ISSN) Kalantari, M ; Kazemeini, M ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    We developed a modified straightforward method for the fabrication of uniformly sized silica-coated magnetite clusters core/shell type nanocomposite particles. Proposed simple one-step processing method permits quick production of materials in high yield. The structural, surface, and magnetic characteristics of the nanocomposite particles were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The sphere-shaped particles almost have the average diameter of 120 nm, with a magnetic cluster core of 80 ± 15 nm, and a silica shell of 25 ± 10 nm... 

    Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes

    , Article Experimental Thermal and Fluid Science ; Volume 68 , November , 2015 , Pages 601-611 ; 08941777 (ISSN) Yarahmadi, M ; Moazami Goudarzi, H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In this study, the effects of ferrofluids on the forced convective heat transfer in a tube with a round cross section under constant heat flux in the laminar flow regime are investigated experimentally. For this purpose, an experimental setup was designed and built. Furthermore, the effects of an external magnetic field on the forced convective heat transfer were examined for various Reynolds numbers and volume concentrations. The parameters of magnetic field strength, magnetic field arrangement, the constancy or oscillation of the magnetic field and also its oscillatory mode were examined. As a result of the experimental studies, in the absence of a magnetic field enhancement in convective... 

    Effects of annealing on phase evolution, microstructure and magnetic properties of mechanically synthesized nickel-ferrite

    , Article Ceramics International ; Volume 36, Issue 7 , 2010 , Pages 2241-2245 ; 02728842 (ISSN) Azizi, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    2010
    Abstract
    The influence of milling and subsequent annealing on nickel-ferrite phase formation was investigated by X-ray diffraction (XRD). Microstructure and magnetic properties of NiFe 2O 4 were determined by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and vibration sample magnetometry (VSM). Single phase nanosized nickel-ferrite was obtained by 30 h mechanical alloying (MA) and subsequent annealing at 600 °C for 1 h. Magnetic properties of the milled powder were extensively affected by the annealing temperature. Considerable growth of the particles and necking by sintering resulted from annealing at 1000 °C  

    A density functional study of strong local magnetism creation on MoS 2 nanoribbon by sulfur vacancy

    , Article Nanoscale ; Volume 2, Issue 8 , 2010 , Pages 1429-1435 ; 20403364 (ISSN) Shidpour, R ; Manteghian, M ; Sharif University of Technology
    2010
    Abstract
    In this study a low-width MoS2 ribbon has been used for probing the electronic structure and local magnetic moment near vacancies. A theoretical study with the full-potential Density Functional Theory (DFT) approach (Wien2K code) have shown that when the dimension of MoS2 is reduced from 2-D to 1-D the nonmagnetic semi-conductor MoS2 becomes a magnetic conductor. Our study has shown that a vacancy on the S-edge with 50% coverage intensifies the magnetization of the edge of the MoS2 nanoribbon but such a vacancy on S-edge with 100% coverage causes this magnetic property to disappear. It is concluded that in both of them, there are positive or negative strong gradients of local magnetic moment... 

    Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes

    , Article Journal of Mechanical Science and Technology ; Volume 30, Issue 2 , 2016 , Pages 809-815 ; 1738494X (ISSN) Shahsavar, A ; Salim Pour, M. R ; Saghafian, M ; Shafii, M. B ; Sharif University of Technology
    Korean Society of Mechanical Engineers 
    Abstract
    The present work examines experimentally the effect of magnetic field on the viscosity and thermal conductivity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe3O4 nanoparticles and Gum arabic (GA) coated carbon nanotubes (CNTs). The hybrid nanofluid was prepared by using ultrasonic dispersion method. Magnetic field was created by a pair of spaced apart magnet plates. The effect of temperature on the time variation of thermal conductivity under applied magnetic field was also investigated. According to the results of this study, viscosity of the hybrid nanofluid increases with the strength of magnetic field, while it decreases with the increase of temperature.... 

    A SPH solver for simulating paramagnetic solid fluid interaction in the presence of an external magnetic field

    , Article Applied Mathematical Modelling ; Volume 40, Issue 7-8 , 2016 , Pages 4341-4369 ; 0307904X (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    The Smoothed Particle Hydrodynamics (SPH) method is extended to solve magnetostatic problems involving magnetically interacting solid bodies. In order to deal with the jump in the magnetic permeability at a fluid-solid interface, a consistent SPH scheme is utilized and a modified formulation is proposed to calculate the magnetic force density along the interface. The results of the magnetostatic solver are verified against those of the finite element method. The governing fluid flow equations are discretized using the same SPH scheme, developing an efficient method for simulating the motion of paramagnetic solid bodies in a fluid flow. The proposed algorithm is applied to a benchmark problem... 

    Iron-borosilicate soft magnetic composites: the correlation between processing parameters and magnetic properties for high frequency applications

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 241-250 ; 03048853 (ISSN) Gheiratmand, T ; Madaah Hosseini, H .R ; Seyed Reihani, S. M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the... 

    Reactive absorption in packed bed columns in the presence of magnetic nanoparticles and magnetic field: Modeling and simulation

    , Article Journal of Industrial and Engineering Chemistry ; Volume 45 , 2017 , Pages 131-144 ; 1226086X (ISSN) Rahimi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2017
    Abstract
    In this article, the influences of ferrofluid and magnetic field on the reactive absorption in packed-bed contactors have been investigated. Because of importance of carbon dioxide emission as a global concern, absorption of carbon dioxide was chosen to investigate these effects. In this regard, multitube approach was applied to model the contactor. The simulation results were validated against experimental data reported in the literature in the absence of nanoparticles and magnetic field and good agreement was obtained. Moreover, influences of various operating conditions on the contactor performance were investigated. It was found that for 3.4 vol.% of magnetic nanoparticles (MNPs), the... 

    The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide

    , Article Journal of Alloys and Compounds ; Volume 784 , 2019 , Pages 134-148 ; 09258388 (ISSN) Enayati, M ; Nemati, A ; Zarrabi, A ; Shokrgozar, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Recently, graphene oxide and its unconventional magnetism have attracted much interest due to their novel applications in spintronics, memory chips and theranostics. Owing to the excellent biocompatibility, cellular uptake, bio-conjugation possibilities, flexible chemical modification and characteristic broad-wavelength absorbance, graphene oxide and its derivatives have been utilized as contrast agents for various imaging modalities such as photoluminescence, photoacoustic or ultrasound. Despite their suitable applications in bioimaging and due to lack of magnetic moment, graphene oxide cannot confer magnetic resonance imaging contrast without incorporating the magnetic component. Such... 

    Energy harvesting from plate using magnetic shape memory alloys

    , Article Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, 23 October 2018 through 25 October 2018 ; 2019 , Pages 229-235 ; 9781728101279 (ISBN) Sayyaadi, H ; Naderi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Ferromagnetic shape memory alloys (FSMA) are new class of smart material and have been investigated for sensor and actuator and energy harvester applications.this paper presents the basis for a novel pressure sensor based on ferromagnetic shape memory alloys. Underlying mechanism for sensing applications is martensitic reorientation accompanied by a chang of magnetization of plate. When this alloy, is exposed in an external magnetic field or stress, has change of magnetization in result.the change in the magnetization of the alloy in accordance with the Faraday induction law, in the wires of the coil leads to the induction voltage. In this paper, a phenomenological constitutive structural... 

    Ferromagnetic Single Electron Transistor

    , M.Sc. Thesis Sharif University of Technology Asgari, Somaieh (Author) ; Faez, Rahim (Supervisor)
    Abstract
    This thesis completely introduses ferromagnetic single electron transistor while that identifies the application and types of the transistor.Master equation is used for simulationing of the transistor. This simulation is divided to two general sections.In the first section proposed thermal equilibrium the normal island and The two spin subsystems , however, are in thermal equilibrium and quantized nature of energy spectrum of a small central electrode and fluctuations in the spin accumulation were ignored , however, we simplify the problem and assume that the charging energy are independent of the electron distribution, and number of electrons in the normal island. ،hat tunnel rates can be... 

    Investigate the Relationship between the Structure of the Magnetic and Electrical properties of Iron-Based Soft Magnetic Composite Coated with Nanoparticles Magnetite

    , M.Sc. Thesis Sharif University of Technology Azadmanesh, Arefe (Author) ; Maddah Hosseini, Hamid Reza (Supervisor) ; Shokrollahi, Houman (Supervisor)
    Abstract
    In this study, soft magnetic composite properties of iron base with insulation magnetite nanoparticles have been studied. First magnetite nanoparticles were prepared by co-precipitation method. The iron and magnetite particles with different weights were dissolved in acetone until the acetone evaporates and the composition uniformity of iron and magnetite powder was obtained. Then press the button on the 4 samples of 400, 600, 800, 1000 MPa, and the weight of Magnetite 1, 3, 5, 7 and 10 percent were cold. X-ray diffraction and scanning electron microscope test results showed that iron and magnetite are homogenous distributed. The measurement of AC magnetic properties also suggest that by... 

    Protein-directed synthesis of γ-Fe2O3 nanoparticles and their magnetic properties investigation

    , Article Bulletin of the Korean Chemical Society ; Vol. 35, issue. 5 , May , 2014 , pp. 1375-1378 ; ISSN: 02532964 Soleyman, R ; Pourjavadi, A ; Masoud, N ; Varamesh, A ; Sattari, A ; Sharif University of Technology
    Abstract
    In this study, maghemite (γ-Fe2O3) nanoparticles were produced using gelatin protein as an effective mediator. Size, shape, surface morphology and magnetic properties of the prepared γ-Fe2O3 nanoparticles were characterized using XRD, FT-IR, TEM, SEM and VSM data. The effects of furnace temperature and time of heating together with the amount of gelatin on the produced gelatin-Fe3O4 nanocomposite were examined to prove the fundamental effect of gelatin; both as a capping agent in the nanoscale synthesis and as the director of the spinel γ-Fe2O3 synthesis among possible Fe 2O3 crystalline structures  

    Effect of annealing on soft magnetic behavior of nanostructured (Fe 0.5Co0.5)73.5Si13.5B 9Nb3Cu1 ribbons

    , Article Journal of Alloys and Compounds ; Vol. 582, issue , 2014 , pp. 79-82 Gheiratmand,T ; Hosseini, H. R. M ; Davami, P ; Gjoka, M ; Loizos, G ; Aashuri, H ; Sharif University of Technology
    Abstract
    The effects of relaxation and nanocrystallization on magnetic properties of (Fe0.5Co0.5)73.5Si13.5B 9Nb3Cu1 ribbons have been investigated. Ribbons were melt-spun at wheel speed of 38 m/s and then annealed at different temperatures. The results indicated that the relaxation processes shift the Curie temperature of amorphous phase to the higher temperatures. It was also found that through crystallization phenomena the saturation magnetization increases due to the super-exchange between Fe and Co atoms in the crystalline phase. A slight variation in magnetization was observed at ~700 °lC during heating due to the ordering transition in FeCo system. At early stage of crystalline phase...