Loading...
Search for: mechanical-engineering
0.007 seconds
Total 188 records

    Stabilizing periodic orbits of the fractional order chaotic van der pol system

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 8, Issue PARTS A AND B , 2010 , pp. 175-183 ; ISBN: 9780791844458 Rahimi, M. A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In tins paper, stabilizing the unstable periodic orbits (UPO) in a chaotic fractional order system called Van der Pol is studied. Firstly, a technique for finding unstable periodic orbit in chaotic fractional order systems is stated. Then by applying tins technique to the van der Pol system, unstable periodic orbit of system is found. After that, a method is presented for stabilization of the discovered UPO based on theories stability of the linear integer order and fractional order systems. Finally, a linear feedback controller was applied to the system and simulation is done for demonstration of controller performance  

    Equations of motion of a ring-like robot with a flexible body and creeping-rolling motion

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; 2010 , pp. 191-197 ; ISBN: 9780791843833 Nejad, A. H ; Alasty, A ; Sharif University of Technology
    Abstract
    The robots that can move on rough terrains are very important especially in Rescue operation, exploration, etc. In this research, a mechanism is introduced for a ring-like robot with a flexible body. This robot is moved by arms which are placed radially and have Reciprocating motion in this direction. By controlling the contraction and the extension of the arms which contact lhe ground, the robot will be forced to move which is called rolling-creeping motion. The robot is stable in stationary state.; also the maximum angle which it can be stable is determined. Considering the speed of contracted arm is the input parameter, the speed of the extended arm for locomotion of the robot has been... 

    Non-equilibrium model of gravity drainage in a single block

    , Article Journal of Porous Media ; Vol. 16, issue. 6 , 2013 , p. 559-571 ; ISSN: 1091028X Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    This work concerns with developing a non-equilibrium model of gravity drainage in a single block. The proposed model which considers both non-equilibrium effects of capillary pressure and relative permeabilities is used for prediction of oil recovery by gravity drainage from a single block. Close agreement observed between the model results and experimental data disclosed that the non-equilibrium assumption is completely reliable for modeling of gravity drainage. The results revealed that when the characteristic time of the saturation variation is comparable with the time required to establish capillary equilibrium, the non-equilibrium effects in gravity drainage must be considered. The... 

    Nonlinear dynamic modeling and simulation of an insect-like flapping wing

    , Article Applied Mechanics and Materials ; Vol. 555, issue , 2014 , p. 3-10 Banazadeh, A ; Taymourtash, N ; Sharif University of Technology
    Abstract
    The main objective of this paper is to present the modeling and simulation of open loop dynamics of a rigid body insect-like flapping wing. The most important aerodynamic mechanisms that explain the nature of the flapping flight, including added mass, rotational lift and delayed stall, are modeled. Wing flapping kinematics is described using appropriate reference frames and three degree of freedom for each wing with respect to the insect body. In order to simulate nonlinear differential equations of motion, 6DOF model of the insect-like flapping wing is developed, followed by an evaluation of the simulation results in hover condition  

    The hydro-mechanical behavior of infilled rock joints with fill materials in unsaturated conditions

    , Article Geotechnical Special Publication ; Issue 231 , 3-7 March , 2013 , Pages 129-138 ; 08950563 (ISSN) ; 9780784412787 (ISBN) Khosravi, A ; Khosravi, M ; Meehan, C. L ; Sharif University of Technology
    2013
    Abstract
    The existence, nature, and frequency of discontinuities in a given rock mass typically govern the overall shear behavior of the rock. The presence of fine materials such as clay and silt within rock joints, whether the product of infilling or natural weathering processes, can have a significant effect on the shear behavior of the rock joint. When assessing the strength of filled rock joints, it is therefore necessary to determine the separate strengths of both the rock and the joint infill material, and to also have a good understanding of the interaction between the two for various joint geometries and levels of infilling. Much of the existing research on the shear strength of filled rock... 

    How to synchronize and register an optical-inertial tracking system

    , Article Applied Mechanics and Materials ; Volume 332 , 2013 , Pages 130-136 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Soroush, A ; Akbar, M ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    Multi-sensor tracking is widely used for augmentation of tracking accuracy using data fusion. A basic requirement for such applications is the real time temporal synchronization and spatial registration of two sensory data. In this study a new method for time and space coordination of two tracking sensor measurements has been presented. For spatial registration we used a body coordinate system and then applied the effect of the level arm. The time synchronization was done based on least mean square (LMS) error method. This method was implemented to synchronize the position and orientation of an object using Inertial (1IMU) and Optical (Optotrak) tracking systems. The results of synchronized... 

    Design methodology and preliminary sizing of an unmanned mars exploration plane (UMEP)

    , Article APPLIED MECHANICS AND MATERIALS; 332; 15; Biomechanics, neurorehabilitation, mechanical engineering, manufacturing systems, robotics and aerospace: optimization of the engineering systems; OPTIROB 2013 ; Volume 332 , 2013 , Pages 15-20 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Behroo, M ; Banazadeh, A ; Golkhandan, A. R ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the mission requirements and design constraints for an Unmanned Martian research aircraft based on a tailor-made classical airplane design methodology. First, the exploration mission is described using the information from previous real-world experiences and the desired payload is proposed accordingly. The environmental conditions that dictate severe constraints to the design space are characterized afterwards. The conventional airplane design cycle is modified to address the lack of statistical data and to define a proper design recycling criteria. Eventually, the outcome is presented in the form of a novel configuration that is well suited to carry out the specified... 

    Non-equilibrium model of gravity drainage in a single block

    , Article Journal of Porous Media ; Volume 16, Issue 6 , 2013 , Pages 559-571 ; 1091028X (ISSN) Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    This work concerns with developing a non-equilibrium model of gravity drainage in a single block. The proposed model which considers both non-equilibrium effects of capillary pressure and relative permeabilities is used for prediction of oil recovery by gravity drainage from a single block. Close agreement observed between the model results and experimental data disclosed that the non-equilibrium assumption is completely reliable for modeling of gravity drainage. The results revealed that when the characteristic time of the saturation variation is comparable with the time required to establish capillary equilibrium, the non-equilibrium effects in gravity drainage must be considered. The... 

    Operation of an opto-mechanical system using a double-cell design for liquid color recognition

    , Article Optics and Lasers in Engineering ; Volume 51, Issue 7 , July , 2013 , Pages 848-855 ; 01438166 (ISSN) Golnabi, H ; Sharif University of Technology
    2013
    Abstract
    Design and operation of an opto-mechanical system employing a double-cell is reported here for the color liquid reflection studies. The reported system consists of a double-fiber optical design and an electro-mechanical scanning system. In this arrangement one fiber transmits the source light to the object surface and the second one transmits the light reflected from the sample to a photodetector. By scanning the double-fiber assembly in one-direction reflection properties of different color liquids are investigated. Reflection signals depend on the cell surface structure and the cell filled material. Two sets of flat/cylindrical cells made of almost similar glass materials are used for this... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    A simplified model for the flow inside cascade impactor

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 7 A , November , 2013 ; 9780791856314 (ISBN) Mehr, S. M. N ; Sohrabi, S ; Falsafi, P ; Gorji, P ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this paper we developed a new mathematical model for the flow inside cascade impactors and via this simplified model, we determined the particle size distribution by a fast and low cost computational method. Using cascade impactors for determining the particle size distribution, one can use comprehensive CFD methods to fully simulate the particle traces. Although the results from those CFD analyses can be very accurate, usually that is not a time and cost efficient routine. In contrast, we showed that by using our proposed calculation we can estimate the particle size distribution very fast and yet with the slight error -comparing to the results from CFD method. Cascade impactors are... 

    Numerical modeling of pulsating inflow to the pulmonary arteries in TCPC morphology using FSI approach

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , 2013 ; 9780791856215 (ISBN) Rajabzadeh, H. R ; Firoozabadi, B ; Saidi, M. S ; Sohrabi, S ; Mehr, S. M. N ; Sharif University of Technology
    2013
    Abstract
    The Fontan surgery is performed on patients with a single ventricle heart defect to prevent the combination of highlyoxygenated and poorly-oxygenated blood. Blood flow in total cavopulmonary connection (TCPC) which culminates an ordinary Fontan operation is practically steady-state but this flow is not appropriate for respiratory systems. This article investigates an approach in Fontan surgery that has been recently proposed in order to make the pulmonary blood flow pulsating. Moreover, for investigating the compliance of vessels and its effects on blood flow in TCPC, we have used the FSI (Fluid Structure Interaction) method as well as rigid wall assumption for comparison purposes. Our TCPC... 

    Modified multiscale finite volume method for two phase flow in porous media

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 7 A , 2013 ; 9780791856314 (ISBN) Saeidimanesh, M ; Eksiri, H ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Multiscale finite volume (MSFV) method have been developed and applied in various complicated physics. The most important advantage of MSFV method is its computational efficiency. In this paper we present a new set of boundary condition for calculation of basis and correction functions which leads to further reduction in computational time in problems with medium heterogeneity and therefore improves computational efficiency. In standard MSFV (sMSFV) method reduced boundary condition is used to determine the basis and correction functions which is based on local information, however in modified MSFV (mMSFV) method global information is used at initial time for constructing boundary condition... 

    Oscillatory behavior of the nonlinear clamped-free beam microgyroscopes under electrostatic actuation and detection

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Firoozbakhsh, K ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Vibratory micromachined gyroscopes use suspending mechanical parts to measure rotation. They have no gyratory component that require bearings, and for this reason they can be easily miniaturized and batch production using micromachining methods. They operate based on the energy interchange between two modes of structural vibration. The objective of this paper is to study the oscillatory behavior of an electrostatically actuated vibrating microcantilever gyroscope with proof mass at its end. In the modelling, the effects of different nonlinearities, fringing field and base rotation are considered. The microgyroscope is subjected to coupled bending oscillations around the static deflection... 

    Ultrasonic-assisted cylindrical grinding of Alumina-zirconia ceramics

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 A , Volume 2 A , 2013 ; 9780791856185 (ISBN) Tawakoli, T ; Akbari, J ; Zahedi, A. M ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Due to its vast applications and stochastic nature, grinding has been the subject of investigations and modifications for decades. Applying ultrasonic vibration in grinding has been a successful innovation introducing benefits such as reduced forces and temperature, improved surface quality, and making higher removal rates possible. In this work a set-up is developed for utilizing ultrasonic vibrations in cylindrical grinding. This is done by rotating and simultaneously vibrating the workpiece material. The set-up is used for cylindrical grinding of Alumina-zirconia ceramic as a difficult-to-grind and widely used industrial ceramic. Optimized parameters for efficient grinding and surface... 

    Modelling and analysis of the effect of angular velocity and acceleration on brain strain field in traumatic brain injury

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , 2013 ; 9780791856215 (ISBN) Hoursan, H ; Ahmadian, M. T ; Barari, A ; Beidokhti, H. N ; Sharif University of Technology
    Abstract
    Traumatic brain injury (TBI) has long been known as one of the most anonymous reasons for death around the world. A presentation of a model of what happens in the process has been under study for many years; and yet it remains a question due to physiological, geometrical and computational complications. Although the facilities for soft tissue modeling have improved and the precise CT-imaging of human head has revealed novel details of brain, skull and the interface (the meninges), a comprehensive FEM model of TBI is still being studied. This study aims to present an optimized model of human head including the brain, skull, and the meninges after a comprehensive study of the previous models.... 

    Turbine blade aerodynamic optimization on unstructured grids using a continuous adjoint method

    , Article ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012, Houston, TX, 9 November 2012 through 15 November 2012 ; Volume 1 , 2012 , Pages 425-431 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    A gradient based optimization using the continuous adjoint method for inverse design of a turbine blade cascade is presented. The advantage of the adjoint method is that the objective function gradients can be evaluated by solving the adjoint equations with coefficients depending on the flow variables. This method is particularly suitable for aerodynamic design optimization for which the number of design variables is large. Bezier polynomials are used to parameterize suction side of the turbine blade. The numerical convective fluxes of both flow and adjoint equations are computed by using a Roe-type approximate Riemann solver. An approximate linearization is applied to simplify the... 

    Nonlinear analysis of pull-in voltage for a fully clamped microplate with movable base

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2012 , Pages 71-75 ; 9780791845264 (ISBN) Karimzade, A ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Micro-electro-mechanical systems (MEMS) such as sensors and actuators are rapidly gaining popularity in a variety of industrial applications. Usually these systems are constructed by a cantilever beam or plate along with a fixed substrate. The movable beam or plate deflects due to applied voltage between the plates. Pull-in voltage and contact time are the most important characteristic of these systems. Allowing the substrate to be movable in vertical direction pull-in voltage in comparison with the fixed substrate is expected to be much smaller. In this paper the pull-in voltage and the point at which pull-in takes place for a fully clamped microplate is evaluated. The nonlinear... 

    Static pull-in analysis of micro-cantilevers in wet etching fabrication process

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 9, Issue PARTS A AND B , November , 2012 , Pages 347-350 ; 9780791845257 (ISBN) Darvishian, A ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Parallel micro actuators are mostly fabricated using the wet etching process within which the presence of capillary force and the resulting pull-in instabilities can severely affect the success of the fabrication process. In the case the capillary force is large enough then the beam like structure of the micro actuators is collapsed. The current paper investigates; static behavior of microcantilevers under effect of capillary force. It is observed that with increasing the instability number defined in the paper, the deflection of the micro-cantilevers is increased. This study shows in the wet etching fabrication process, if the distance between the beam and substrate is small enough, the... 

    Characterization of static behavior of electrostatically actuated micro tweezers using modified couple stress theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 9, Issue PARTS A AND B , Novembe , 2012 , Pages 581-585 ; 9780791845257 (ISBN) Darvishian, A ; Moeenfard, H ; Ghaderi, N ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, static behavior and pull-in of micro tweezers is studied. The micro tweezer is modelled as two cantilever beams. Static behavior of the micro tweezer under the effect of electrostatic actuation is modelled using the Euler-Bernoulli beam theory. In order to capture size effects on the behavior of micro tweezers, modified couple stress theory is utilized. It is shown when the voltage between two electrodes increased from some specific value, micro beams adhere to each other and it is observed that the pull-in voltage predicted by the modified couple stress theory considerably differs with that of the classical theory of elasticity. Results of this paper can be used for accurate...