Loading...
Search for: medical-applications
0.006 seconds
Total 134 records

    Polyvinyl alcohol and polyvinyl alcohol/ polyvinyl pyrrolidone biomedical foams crosslinked by gamma irradiation

    , Article Journal of Cellular Plastics ; Volume 53, Issue 4 , 2017 , Pages 359-372 ; 0021955X (ISSN) Sabourian, P ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    Foams for biomedical applications were made from polyvinyl alcohol, polyvinyl alcohol / polyvinyl pyrrolidone blend and their nanocomposites with nanoclay by clean processes. Air was entrapped into the aqueous polymer solutions during vigorous mixing and then the solutions were freeze-dried. The foams structure was stabilized by crosslinking via gamma irradiation without using any harmful chemicals. The hydrophilic biocompatible foams possessed interconnected open cell structure with remarkable capacity to absorb and retain water. The foams in wet state were soft and flexible. Desirable pore structure and higher water absorption was obtained at a solution concentration of 5 wt% for both... 

    Dynamic analysis of magnetic nanoparticles crossing cell membrane

    , Article Journal of Magnetism and Magnetic Materials ; Volume 422 , 2017 , Pages 464- ; 03048853 (ISSN) Pedram, M. Z ; Shamloo, A ; Ghafar Zadeh, E ; Alasty, E. Y. C. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and... 

    In situ preparation and characterization of biocompatible acrylate-terminated polyurethane containing chemically modified multiwalled carbon nanotube

    , Article Polymer Composites ; 2017 ; 02728397 (ISSN) Alishiri, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Inc  2017
    Abstract
    Biodegradable acrylate-terminated polyurethane/acrylate (APUA) filled with 2-hydroxyethyl methacrylate functionalized carbon nanotube (CNT-HEMA) was prepared by in situ free radical crosslinking. CNT-HEMA enhanced crystallinity of soft domain and caused more phase separation between hard and soft domains of APUA. Tensile testing showed a considerable improvement in elastic modulus (∼160%) and tensile strength (∼30%) at 1 wt% loading. Morphological features of APUA induced by nanotubes were found to be dominant on mechanical properties of APUA/CNT-HEMA. CNT-HEMA increased water contact angle of APUA; however, wettability of APUA/CNT-HEMA maintained in acceptable range for biomedical... 

    Noise reduction in OCT skin images

    , Article Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 12 February 2017 through 14 February 2017 ; Volume 10137 , 2017 ; 16057422 (ISSN) ; 9781510607194 (ISBN) Turani, Z ; Fatemizadeh, E ; Adabi, S ; Mehregan, D ; Daveluy, S ; Nasiriavanaki, M ; Gimi, B ; Krol, A ; Sharif University of Technology
    Abstract
    OCT skin images suffer from artifacts. Speckle is the main artifact while the other one is called background noise. In this study, we propose an algorithm that significantly reduces the background noise before applying a speckle reduction method. The results show that the diagnostically relevant features in the images become clearer after applying the proposed method. We used sub-pixel weighted median filtering for speckle reduction. The results from background noise removal in combination with the proposed speckle reduction algorithm show a significant improvement in the clarity of diagnostically relevant features in in-vivo human skin images. © 2017 SPIE  

    An intelligent despeckling method for swept source optical coherence tomography images of skin

    , Article Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, 12 February 2017 through 14 February 2017 ; Volume 10137 , 2017 ; 16057422 (ISSN); 9781510607194 (ISBN) Adabi, S ; Mohebbikarkhoran, H ; Mehregan, D ; Conforto, S ; Nasiriavanaki, M ; Alpinion Medical Systems; The Society of Photo-Optical Instrumentation Engineers (SPIE) ; Sharif University of Technology
    SPIE  2017
    Abstract
    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for... 

    Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 251-259 ; 02578972 (ISSN) Nemati, A ; Saghafi, M ; Khamseh, S ; Alibakhshi, E ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Progress in tissue engineering and regenerative medicine necessitates the use of novel materials with promising bio-surface for biomedical applications. In this work, TixNy thin films are applied on biological TC4 substrates in a mixed atmosphere of Ar and N2 via magnetron sputtering system for the protection of TC4 alloy. The effects of N/Ti ratio on the phase structure, growth orientation, contact angle, and the mechanical and corrosion performances of thin films are discussed by implementation of composition-microstructure-property interrelationships. The phase structure of TixNy thin films is changed from amorphous-like to single phase Ti2N structure with increasing N/Ti ratio. In the... 

    In situ preparation and characterization of biocompatible acrylate-terminated polyurethane containing chemically modified multiwalled carbon nanotube

    , Article Polymer Composites ; Volume 39 , April , 2018 , Pages E297-E307 ; 02728397 (ISSN) Alishiri, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Biodegradable acrylate-terminated polyurethane/acrylate (APUA) filled with 2-hydroxyethyl methacrylate functionalized carbon nanotube (CNT-HEMA) was prepared by in situ free radical crosslinking. CNT-HEMA enhanced crystallinity of soft domain and caused more phase separation between hard and soft domains of APUA. Tensile testing showed a considerable improvement in elastic modulus (∼160%) and tensile strength (∼30%) at 1 wt% loading. Morphological features of APUA induced by nanotubes were found to be dominant on mechanical properties of APUA/CNT-HEMA. CNT-HEMA increased water contact angle of APUA; however, wettability of APUA/CNT-HEMA maintained in acceptable range for biomedical... 

    Improved adhesion of NiTi wire to silicone matrix for smart composite medical applications

    , Article Materials and Design ; Volume 30, Issue 9 , 2009 , Pages 3667-3672 ; 02641275 (ISSN) Sadrnezhaad, Kh ; Hassanzadeh Nemati, N ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    Recent uses of intelligent composites in biomedical appliances aggrandize the necessity of bonding-strength improvement in NiTi/silicone matrix interface. SEM micrographs and pull-out tests are employed to determine the strength of the NiTi/silicone bonds in a flexible composite piece. Greater adhesion strengths are obtained due to the presence of thin oxide layer, surface roughness and frictional forces between the embedded-wires and the contacting phase. Effect of curing treatment on phase transformation temperatures of the wires is determined by electrical resistivity (ER) measurements. Results show that the curing treatment shifts the transition points of the wires towards higher... 

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Mohseni Taromsari, S ; Salari, M ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The present study focuses on simultaneous influence of graphene nanoplatelets (GNP) and hydroxyapatite (HAp) nanopowder on microstructural, wear, tensile and biofunctional behavior of UHMWPE based nanocomposites used in biomedical applications, with the aim to utilize GNP's mechanical strength and wear resistance, while benefitting from HAp's biocompatibility at the same time. 0.1, 0.5 and 1 wt% GNP with 10 wt% optimized concentration of HAp were added to the UHMWPE matrix through an easy two-step approach consisting of solvent mixing and ultrasonication in ethanol as a liquid media. The dried nanocomposite samples of powder were then hot pressed at an optimized temperature and pressure to... 

    Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 15 , 2019 , Pages 19275-19282 ; 02728842 (ISSN) Esmaeilnejad, A ; Mahmoudi, P ; Zamanian, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, apatite formation ability on TiO2 nanotubes (TNTs) synthesized by anodizing process were compared with TNTs decorated by MnO nanoparticles. The MnO nanoparticles used for decoration process were fabricated via thermal decomposition method. At first, it was strived to find the optimal condition of anodizing process and the effect of applied voltages (15 V, 20 V, and 25 V) and process times (15 min, 20 min, and 25 min) on the diameter of the synthesized TNTs was investigated. Results of microscopic characterizations showed that the completely uniform structure of nanotubes with a diameter in the range of about 100–130 nm was achieved after 20 min of anodizing process at an... 

    Molecular dynamics simulation of plastic deformation and interfacial delamination of NiTi/Ag bilayer by cyclic-nanoindentation: Effects of crystallographic orientation of substrate

    , Article Computational Materials Science ; Volume 168 , 2019 , Pages 229-245 ; 09270256 (ISSN) Fazeli, S ; Sadrnezhaad, S. k ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This paper presents a comparative study of plasticity and fracture behavior of the NiTi/Ag bilayer for the different crystallographic orientations of the substrate. Molecular dynamic (MD) simulation was used to determine the deformation mechanism, dislocation density, plastic energy dissipation and delamination of the NiTi/Ag bilayers near the interface, when NiTi aligned at (1 0 0), (1 1 1), (1 1 0), (3 2 1), (2 1 0) and (2 1 1) faces during the cyclic-nanoindentation test. The Griffith energy balance model was used to estimate the energy release associated with the delamination. The results of the simulation are suggested the dependence of deformation mechanism, energy release rate (Gin),... 

    Bio-based UV curable polyurethane acrylate: Morphology and shape memory behaviors

    , Article European Polymer Journal ; Volume 118 , 2019 , Pages 514-527 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Smart bio-based shape memory polymers with high performance and fast response have the exciting potential to meet the growing need in biomedical applications. In this study, novel fast response UV-curable shape memory polyurethane acrylates (SMPUAs) comprising polycaprolactone diols (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxy-methyl methacrylate (HEMA) were synthesized by two-step bulk polymerization. Two series of PUAs with almost the same amount of hard segment content (HSC) were prepared with varying soft-segment molecular weight (2000, 3000, and 4000 g/mol) and different molar ratios of constituents. A mono-functional reactive diluent was used to control HSC and reduce the... 

    Microstructural characterization and enhanced hardness, wear and antibacterial properties of a powder metallurgy SiC/Ti-Cu nanocomposite as a potential material for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 8 , 2019 , Pages 10603-10611 ; 02728842 (ISSN) Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, SiC/Ti–Cu nanocomposite was fabricated by mechanical alloying and sintering process. Effects of SiC nano-reinforcement on phase transformation, microstructure and tribological and antibacterial properties Ti–Cu intermetallic alloy were studied. The microstructure of the powders and sintered materials was investigated using X-ray diffraction, and scanning/transmission electron microscopy. The results exhibited the formation of major TiCu and TiCu 4 , and minor Ti 2 Cu and Ti 2 Cu 3 nanocrystalline phases in the sintered Ti–Cu and SiC/Ti–Cu samples. With the addition of the nanoparticles, the amount of TiCu 4 phase increased. Reinforcing Ti–Cu intermetallic alloy by SiC... 

    Curcumin-Loaded Starch Micro/Nano particles for biomedical application: the effects of preparation parameters on release profile

    , Article Starch/Staerke ; Volume 71, Issue 5-6 , 2019 ; 00389056 (ISSN) Dehghan Baniani, D ; Zahedifar, P ; Bagheri, R ; Solouk, A ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Although curcumin is highly cytotoxic against cancer cells, its hydrophobicity and fast degradation at physiological pH limit its effective practical application. To prevent such limitations, inexpensive curcumin-loaded starch particles are synthesized in this research. Particles are prepared by water-in-oil (W/O) miniemulsion technique and an adsorption method is used for curcumin loading. Also, encapsulation efficiency (%EE) is improved by using pluronic F-127 in the drug solution. Particles are characterized, swelling studies are performed, and MTT assays against human adipose mesenchymal stem cells (hAMSCs) and MG-63 cells are utilized for investigations. Results indicate that... 

    Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers

    , Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) Golizadeh, M ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Sustained release of CIP from TiO2-PVDF/starch nanocomposite mats with potential application in wound dressing

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 30 , 2020 Ansarizadeh, M ; Haddadi, S. A ; Amini, M ; Hasany, M ; Ramazani SaadatAbadi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Electrospinning is an economical and alluring method to fabricate wound dressing mats from a variety of natural and synthetic materials. In this study, polyvinylidene fluoride (PVDF) and starch composite mats containing ciprofloxacin (CIP) loaded on titanium dioxide nanoparticles (TiO2) were prepared. Fourier Transform Infrared spectra of CIP, synthesized TiO2 NPs, TiO2/CIP, and PVDF/starch composite mats are analyzed. Scanning electron microscopy images revealed that the fiber diameter of PVDF nanofibers thickens by increasing starch, which varies between 180 nm and 550 nm. Strain at break of PVDF, starch, PVDF/starch (2:1 w:w; P2S1), PVDF/starch (1:1 w:w; P1S1), PVDF/starch (1:2 w:w;...