Loading...
Search for: medical-applications
0.011 seconds
Total 134 records

    Multiphysics analysis and practical implementation of a soft μ-actuator- based microfluidic micromixer

    , Article Journal of Microelectromechanical Systems ; Volume 29, Issue 2 , 2020 , Pages 268-276 Annabestani, M ; Azizmohseni, S ; Esmaeili Dokht, P ; Bagheri, N ; Aghassizadeh, A ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Electroactive-Polymers (EAPs) are one of the best soft $mu $ -actuators with great biomedical applications. Ionic ones (i-EAPs) have more promising features and have adequate potential for using in the active microfluidic devices. Here, as a case study, we have designed and fabricated a microfluidic micromixer using an i-EAP named Ionic Polymer-Metal Composite (IPMC). In microfluidics, active devices have more functionality but due to their required facilities are less effective for Point of Care Tests (POCTs). In the direction of solving this paradox, we should use some active components that they need minimum facilities. IPMC can be one of these components, hence by integrating the IPMC... 

    Personalized computational human phantoms via a hybrid model-based deep learning method

    , Article 15th IEEE International Symposium on Medical Measurements and Applications, MeMeA 2020, 1 June 2020 through 3 June 2020 ; July , 2020 Khodajou Chokami, H ; Bitarafan, A ; Dylov, D. V ; Soleymani Baghshah, M ; Hosseini, S. A ; IEEE; IEEE Instrumentation and Measurement Society; IEEE Sensors Council Italy Chapter; Politecnica di Bari; Politecnico di Torino; Societa Italiana di Analisi del Movimento in Clinica ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Computed tomography (CT) simulators are versatile tools for scanning protocol evaluation, optimization of geometrical design parameters, assessment of image reconstruction algorithms, and evaluation of the impact of future innovations attempting to improve the performance of CT scanners. Computational human phantoms (CHPs) play a key role in simulators for the radiation dosimetry and assessment of image quality tasks in the medical x-ray systems. Since the construction of patient-specific CHPs can be both difficult and time-consuming, nominal standard/reference CHPs have been established, yielding significant discrepancies in the special design and optimization demands of patient dose and... 

    A robust FCM algorithm for image segmentation based on spatial information and total variation

    , Article 9th Iranian Conference on Machine Vision and Image Processing, 18 November 2015 through 19 November 2015 ; Volume 2016-February , 2015 , Pages 180-184 ; 21666776 (ISSN) ; 9781467385398 (ISBN) Akbari, H ; Mohebbi Kalkhoran, H. M ; Fatemizadeh, E ; Sharif University of Technology
    IEEE Computer Society 
    Abstract
    Image segmentation with clustering approach is widely used in biomedical application. Fuzzy c-means (FCM) clustering is able to preserve the information between tissues in image, but not taking spatial information into account, makes segmentation results of the standard FCM sensitive to noise. To overcome the above shortcoming, a modified FCM algorithm for MRI brain image segmentation is presented in this paper. The algorithm is realized by incorporating the spatial neighborhood information into the standard FCM algorithm and modifying the membership weighting of each cluster by smoothing it by Total Variation (TV) denoising. The proposed algorithm is evaluated with accuracy index in... 

    Immobilization of α -chymotrypsin on the surface of magnetic/gold core/shell nanoparticles

    , Article Journal of Nanotechnology ; Volume 2013 , 2013 ; 16879503 (ISSN) Kamal Ahmadi, M ; Vossoughi, M ; Sharif University of Technology
    Hindawi Publishing Corporation  2013
    Abstract
    Over the last decade, nanoparticles used as protein carriers have opened new avenues for a variety of biomedical applications. The main concern for these applications is changes in biological activity of immobilized proteins due to conformational changes on the surface of the carrier. To evaluate this concern, the preparation and biocatalyst activity of α-chymotrypsin-Fe 3O4 @ Au core/shell nanoparticles were investigated. First, Fe3O4 @ Au core/shell nanoparticles were synthesized by coprecipitation method and citrate reduction of HAuCl 4. TEM imaging revealed a core size of 13 ± 3 nm and a shell thickness of 4 ± 1 nm for synthesized nanoparticles. X-ray diffraction (XRD) was used to study... 

    Synthesis of magnetic mesoporous nanocomposites: A promising candidate for diagnostic and therapeutic biomedical applications

    , Article Materials Chemistry and Physics ; Volume 167 , November , 2015 , Pages 201-208 ; 02540584 (ISSN) Bagherzadeh, E ; Hosseini, H. R. M ; Khakzadian, J ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In the present research, iron oxide nanoparticles were synthesized through the hydrothermal method, and the influence of processing parameters such as pH of the initial coprecipitation reaction, time and temperature of hydrothermal treatment was studied. The magnetic iron oxide nanoparticles were coated with a negatively charged, thin layer of silica. The product is then coated with a layer of mesoporous silica. As a result of the electrostatic attraction between the cationic CTAB and the primary silica coating, the formation of mesoporous silica would be mainly localized on the surface of nanoparticles. Calcination was performed in an argon atmosphere tube furnace at 550 °C, through which... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and... 

    Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Mohseni Taromsari, S ; Salari, M ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The present study focuses on simultaneous influence of graphene nanoplatelets (GNP) and hydroxyapatite (HAp) nanopowder on microstructural, wear, tensile and biofunctional behavior of UHMWPE based nanocomposites used in biomedical applications, with the aim to utilize GNP's mechanical strength and wear resistance, while benefitting from HAp's biocompatibility at the same time. 0.1, 0.5 and 1 wt% GNP with 10 wt% optimized concentration of HAp were added to the UHMWPE matrix through an easy two-step approach consisting of solvent mixing and ultrasonication in ethanol as a liquid media. The dried nanocomposite samples of powder were then hot pressed at an optimized temperature and pressure to... 

    Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 15 , 2019 , Pages 19275-19282 ; 02728842 (ISSN) Esmaeilnejad, A ; Mahmoudi, P ; Zamanian, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, apatite formation ability on TiO2 nanotubes (TNTs) synthesized by anodizing process were compared with TNTs decorated by MnO nanoparticles. The MnO nanoparticles used for decoration process were fabricated via thermal decomposition method. At first, it was strived to find the optimal condition of anodizing process and the effect of applied voltages (15 V, 20 V, and 25 V) and process times (15 min, 20 min, and 25 min) on the diameter of the synthesized TNTs was investigated. Results of microscopic characterizations showed that the completely uniform structure of nanotubes with a diameter in the range of about 100–130 nm was achieved after 20 min of anodizing process at an... 

    Bio-based UV curable polyurethane acrylate: Morphology and shape memory behaviors

    , Article European Polymer Journal ; Volume 118 , 2019 , Pages 514-527 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Smart bio-based shape memory polymers with high performance and fast response have the exciting potential to meet the growing need in biomedical applications. In this study, novel fast response UV-curable shape memory polyurethane acrylates (SMPUAs) comprising polycaprolactone diols (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxy-methyl methacrylate (HEMA) were synthesized by two-step bulk polymerization. Two series of PUAs with almost the same amount of hard segment content (HSC) were prepared with varying soft-segment molecular weight (2000, 3000, and 4000 g/mol) and different molar ratios of constituents. A mono-functional reactive diluent was used to control HSC and reduce the... 

    Microstructural characterization and enhanced hardness, wear and antibacterial properties of a powder metallurgy SiC/Ti-Cu nanocomposite as a potential material for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 8 , 2019 , Pages 10603-10611 ; 02728842 (ISSN) Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, SiC/Ti–Cu nanocomposite was fabricated by mechanical alloying and sintering process. Effects of SiC nano-reinforcement on phase transformation, microstructure and tribological and antibacterial properties Ti–Cu intermetallic alloy were studied. The microstructure of the powders and sintered materials was investigated using X-ray diffraction, and scanning/transmission electron microscopy. The results exhibited the formation of major TiCu and TiCu 4 , and minor Ti 2 Cu and Ti 2 Cu 3 nanocrystalline phases in the sintered Ti–Cu and SiC/Ti–Cu samples. With the addition of the nanoparticles, the amount of TiCu 4 phase increased. Reinforcing Ti–Cu intermetallic alloy by SiC... 

    Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers

    , Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) Golizadeh, M ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; 2020 Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; Volume 47, Issue 3 , 2021 , Pages 2917-2948 ; 02728842 (ISSN) Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber-Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process

    , Article Intermetallics ; Volume 131 , 2021 ; 09669795 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Ebadzadeh, T ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the rapid synthesis of nanostructured NiTi–Ni3Ti intermetallic alloy from titanium and nickel powders through mechanical alloying followed by microwave-assisted sintering process was investigated. The sintered samples at different temperatures exhibited major phases of NiTi– B2 and Ni3Ti, and minor phases of NiTi–B19′ and Ti2Ni. The density, porosity and microhardness of the sample varied based on the sintering temperature, in which the highest density and microhardness (~750 H V) were obtained at sintering temperature of 1100 °C. Based on the results of this research, the microwave-assisted sintering can be applied to fabricate Ni–Ti alloys with improved mechanical properties... 

    Recent advances in the modification of carbon-based quantum dots for biomedical applications

    , Article Materials Science and Engineering C ; Volume 120 , 2021 ; 09284931 (ISSN) Alaghmandfard, A ; Sedighi, O ; Tabatabaei Rezaei, N ; Abedini, A. A ; Malek Khachatourian, A ; Toprak, M. S ; Seifalian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface... 

    Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process

    , Article Intermetallics ; Volume 131 , 2021 ; 09669795 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Ebadzadeh, T ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the rapid synthesis of nanostructured NiTi–Ni3Ti intermetallic alloy from titanium and nickel powders through mechanical alloying followed by microwave-assisted sintering process was investigated. The sintered samples at different temperatures exhibited major phases of NiTi– B2 and Ni3Ti, and minor phases of NiTi–B19′ and Ti2Ni. The density, porosity and microhardness of the sample varied based on the sintering temperature, in which the highest density and microhardness (~750 H V) were obtained at sintering temperature of 1100 °C. Based on the results of this research, the microwave-assisted sintering can be applied to fabricate Ni–Ti alloys with improved mechanical properties... 

    Recent advances in the modification of carbon-based quantum dots for biomedical applications

    , Article Materials Science and Engineering C ; Volume 120 , 2021 ; 09284931 (ISSN) Alaghmandfard, A ; Sedighi, O ; Tabatabaei Rezaei, N ; Abedini, A. A ; Malek Khachatourian, A ; Toprak, M. S ; Seifalian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface... 

    Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Rabiee, N ; Ghadiri, A. M ; Alinezhad, V ; Sedaghat, A ; Ahmadi, S ; Fatahi, Y ; Makvandi, P ; Saeb, M. R ; Bagherzadeh, M ; Asadnia, M ; Varma, R. S ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing... 

    Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller

    , Article Mechatronics ; Volume 84 , 2022 ; 09574158 (ISSN) Khalesi, R ; Yousefi, M ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recent development in technology and improvement of manufacturing tools have accelerated the use of microrobots (MRs) in numerous areas such as micro sensing and medical applications. The ability to control multiple MRs simultaneously and independently could lead to higher performance, and even make new applications possible. In this paper, we have proposed a system for simultaneous and independent control of the position of multiple MRs in a plane. The system consists of 2N permanent magnets (PMs) with a circular arrangement in the plane around the workspace and a pair of Helmholtz coil to control N MRs. PMs are rotated by servomotors, and the coil aligns the orientation of the MRs normal... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of...