Loading...
Search for: metabolism
0.01 seconds
Total 197 records

    Pore control in SMA NiTi scaffolds via space holder usage

    , Article Materials Science and Engineering C ; Volume 32, Issue 5 , 2012 , Pages 1266-1270 ; 09284931 (ISSN) Ghasemi, A ; Hosseini, S. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Porous NiTi shape memory alloy (SMA) was fabricated by sintering of compressed constituent elements pre-mixed with NaCl or urea spacer holders. Effect of spacer to metal volume-ratio (r S) on shape, size, distribution and openness of the voids was probed by optical metallography, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) was used to determine the SMA transformation temperatures. Controllable void geometry helping osteoblast proliferation and bone cell growth was gained by addition of the spacers. At r S = 0.7, percentage of the open pores reached 52% while at r S = 1.43, interconnected pores with 200 to 500 μm diameter were... 

    Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner

    , Article Carbon ; Volume 50, Issue 5 , 2012 , Pages 1853-1860 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2012
    Abstract
    Interactions of chemically exfoliated graphene oxide (GO) nanosheets and Escherichia coli bacteria living in mixed-acid fermentation with an anaerobic condition were investigated for different exposure times. X-ray photoelectron spectroscopy showed that as the exposure time increased (from 0 to 48 h), the oxygen-containing functional groups of the GO decreased by ∼60%, indicating a relative chemical reduction of the sheets by interaction with the bacteria. Raman spectroscopy and current-voltage measurement confirmed the reduction of the GO exposed to the bacteria. The reduction was believed to be due to the metabolic activity of the surviving bacteria through their glycolysis process. It was... 

    The use of a cis-dioxomolybdenum(VI) dinuclear complex with quadradentate 1,4-benzenediylbis(benzyldithiocarbamate)(2-) as model compound for the active site of oxo transfer molybdoenzymes: Reactivity, kinetics, and catalysis

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 88 , 2012 , Pages 210-215 ; 13861425 (ISSN) Moradi Shoeili, Z ; Boghaei, D. M ; Sharif University of Technology
    2012
    Abstract
    Dinuclear cis-dioxomolybdenum(VI) complex [{MoO 2(Bz 2Benzenediyldtc)} 2] coordinated by a quadradentate dithiocarbamate (Bz 2Benzenediyldtc 2- = 1,4-benzenediylbis(benzyldithiocarbamate)(2-)) has been prepared and characterized by elemental analysis, 13C NMR, IR and UV-vis spectroscopy. The kinetics of the oxygen atom transfer between [{MoO 2(Bz 2Benzenediyldtc)} 2] and PPh 3 was studied spectrophotometrically in CH 2Cl 2 medium at 520 nm and four different temperatures, 288, 293, 298 and 303 K, respectively. The reaction follows second order kinetics with the rate constant k = 0.163(2) M -1 S -1 and its increasingly strong absorption at 520 nm clearly indicate the formation of a μ-oxo... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    Discovering dominant pathways and signal-response relationships in signaling networks through nonparametric approaches

    , Article Genomics ; Volume 102, Issue 4 , October , 2013 , Pages 195-201 ; 08887543 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2013
    Abstract
    A signaling pathway is a sequence of proteins and passenger molecules that transmits information from the cell surface to target molecules. Understanding signal transduction process requires detailed description of the involved pathways. Several methods and tools resolved this problem by incorporating genomic and proteomic data. However, the difficulty of obtaining prior knowledge of complex signaling networks limited the applicability of these tools. In this study, based on the simulation of signal flow in signaling network, we introduce a method for determining dominant pathways and signal response to stimulations. The model uses topology-weighted transit compartment approach and comprises... 

    Functional analyses of recombinant mouse hepcidin-1 in cell culture and animal model

    , Article Biotechnology Letters ; Volume 35, Issue 8 , August , 2013 , Pages 1191-1197 ; 01415492 (ISSN) Yazdani, Y ; Keyhanvar, N ; Kalhor, H. R ; Rezaei, A ; Sharif University of Technology
    2013
    Abstract
    Hepcidin is a peptide hormone that plays an important role in iron metabolism. We have produced a recombinant mouse hepcidin-1 by using baculovirus expression system. Its expression yield was 25 μg/ml when cell culture media were supplemented with a protease inhibitor cocktail. The recombinant mouse hepcidin-1 and synthetic human hepcidin-25 had similar effects on reducing ferroportin expression in J774A cell line and in peritoneal macrophages. However, synthetic human hepcidin-25 was more efficient than recombinant mouse hepcidin-1 in reducing iron concentration in blood circulation (p < 0.01)  

    NETAL: A new graph-based method for global alignment of protein-protein interaction networks

    , Article Bioinformatics ; Volume 29, Issue 13 , 2013 , Pages 1654-1662 ; 13674803 (ISSN) Neyshabur, B ; Khadem, A ; Hashemifar, S ; Arab, S. S ; Sharif University of Technology
    2013
    Abstract
    Motivation: The interactions among proteins and the resulting networks of such interactions have a central role in cell biology. Aligning these networks gives us important information, such as conserved complexes and evolutionary relationships. Although there have been several publications on the global alignment of protein networks; however, none of proposed methods are able to produce a highly conserved and meaningful alignment. Moreover, time complexity of current algorithms makes them impossible to use for multiple alignment of several large networks together.Results: We present a novel algorithm for the global alignment of protein-protein interaction networks. It uses a greedy method,... 

    Relationship between serum level of selenium and metabolites using 1hnmr-based metabonomics in parkinson's disease

    , Article Applied Magnetic Resonance ; Volume 44, Issue 6 , January , 2013 , Pages 721-734 ; 09379347 (ISSN) Fathi, F ; Kyani, A ; Darvizeh, F ; Mehrpour, M ; Tafazzoli, M ; Shahidi, G ; Sharif University of Technology
    2013
    Abstract
    Parkinson's disease (PD) is a neurodegenerative disease, which is not easily diagnosed using clinical tests and the discovery of proper methods would be a major step towards a successful diagnosis. In the present study, we employed metabolic profiling using proton nuclear magnetic resonance spectroscopy to find metabolites in serum, which are helpful for the diagnosis of PD. Classification of PD and healthy subject was done using random forest. Serum levels of selenium measured by atomic absorption spectrometry in PD group were lower than the serum selenium levels in the control group. The metabolites causing selenium changes in PD patients were identified using random forest, and a model... 

    Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01

    , Article World Journal of Microbiology and Biotechnology ; Volume 29, Issue 6 , June , 2013 , Pages 1039-1047 ; 09593993 (ISSN) Partovi, M ; Lotfabad, T. B ; Roostaazad, R ; Bahmaei, M ; Tayyebi, S ; Sharif University of Technology
    2013
    Abstract
    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals.... 

    A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 6 , 2013 , Pages 672-682 ; 09544119 (ISSN) Nikkhoo, M ; Hsu, Y. C ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The metamodel analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the... 

    Graphene: Promises, facts, opportunities, and challenges in nanomedicine

    , Article Chemical Reviews ; Volume 113, Issue 5 , 2013 , Pages 3407-3424 ; 00092665 (ISSN) Mao, H. Y ; Laurent, S ; Chen, W ; Akhavan, O ; Imani, M ; Ashkarran, A. A ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Graphene, a two-dimensional (2D) sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, has led to an explosion of interest in the field of materials science, physics, chemistry, and biotechnology since the few-layers graphene (FLG) flakes were isolated from graphite in 2004. For an extended search, derivatives of nanomedicine such as biosensing, biomedical, antibacterial, diagnosis, cancer and photothermal therapy, drug delivery, stem cell, tissue engineering, imaging, protein interaction, DNA, RNA, toxicity, and so on were also added. Since carbon nanotubes are normally described as rolled-up cylinders of graphene sheets and the controllable synthesis of nanotubes is well... 

    FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner

    , Article Scientific Reports ; Volume 3 , 2013 ; 20452322 (ISSN) Ramesh, P ; Baroji, Y. F ; S. Reihani, S. Nader ; Stamou, D ; Oddershede, L. B ; Bendix, P. M ; Sharif University of Technology
    2013
    Abstract
    Syndapin 1 FBAR, a member of the Bin-amphiphysin-Rvs (BAR) domain protein family, is known to induce membrane curvature and is an essential component in biological processes like endocytosis and formation and growth of neurites. We quantify the curvature sensing of FBAR on reconstituted porcine brain lipid vesicles and show that it senses membrane curvature at low density whereas it induces and reinforces tube stiffness at higher density. FBAR strongly up-concentrates on the high curvature tubes pulled out of Giant Unilamellar lipid Vesicles (GUVs), this sorting behavior is strongly amplified at low protein densities. Interestingly, FBAR from syndapin 1 has a large affinity for tubular... 

    A novel distributed model of the heart under normal and congestive heart failure conditions

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 4 , 2013 , Pages 362-372 ; 09544119 (ISSN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    2013
    Abstract
    Conventional models of cardiovascular system frequently lack required detail and focus primarily on the overall relationship between pressure, flow and volume. This study proposes a localized and regional model of the cardiovascular system. It utilizes noninvasive blood flow and pressure seed data and temporal cardiac muscle regional activity to predict the operation of the heart under normal and congestive heart failure conditions. The analysis considers specific regions of the heart, namely, base, mid and apex of left ventricle. The proposed method of parameter estimation for hydraulic electric analogy model is recursive least squares algorithm. Based on simulation results and comparison... 

    Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    , Article Journal of Chemical Physics ; Volume 138, Issue 6 , 2013 ; 00219606 (ISSN) Maftouni, N ; Amininasab, M ; Ejtehadi, M. R ; Kowsari, F ; Dastvan, R ; Sharif University of Technology
    2013
    Abstract
    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5 ms coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment... 

    Characterization of nitrocarburized surface layer on AISI 1020 steel by electrolytic plasma processing in an urea electrolyte

    , Article Journal of Materials Research and Technology ; Volume 2, Issue 3 , 2013 , Pages 213-220 ; 22387854 (ISSN) Karimi Zarchi, M ; Shariat, M.H ; Dehghan, S. A ; Solhjoo, S ; Sharif University of Technology
    Elsevier Editora Ltda  2013
    Abstract
    In this study, electrolytic plasma processing (EPP) was employed for surface nitrocarburizing of AISI 1020 steel in a urea electrolyte, where the substrate samples were connected cathodically to a high-voltage DC current power supply. The structural, mechanical, wear and corrosion properties of the samples treated for 3-5 min were investigated. The results show that the surface layers formed on the samples by this treatment at 220 V have a ferritic nitrocarburizing characteristic which consists of a compound layer and diffusion zone. The surface layers of the treated samples at 240 V consisted of a compound layer, martensitic layer and diffusion zone, respectively, which is a marker of... 

    Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell

    , Article Biotechnology Letters ; Volume 35, Issue 2 , 2013 , Pages 197-203 ; 01415492 (ISSN) Marashi, S. K. F ; Kariminia, H. R ; Savizi, I. S. P ; Sharif University of Technology
    2013
    Abstract
    Wastewater of purified terephthalic acid (PTA) from a petrochemical plant was examined in a membrane-less single chamber microbial fuel cell for the first time. Time course of voltage during the cell operation cycle had two steady phases, which refers to the fact that metabolism of microorganisms was shifted from highly to less biodegradable carbon sources. The produced power density was 31.8 mW m-2 (normalized per cathode area) and the calculated coulombic efficiency was 2.05 % for a COD removal of 74 % during 21 days. The total removal rate of different pollutants in the PTA wastewater was observed in the following order: (acetic acid) > (benzoic acid) > (phthalic acid) > (terephthalic... 

    Retina-choroid-sclera permeability for ophthalmic drugs in the vitreous to blood direction: quantitative assessment

    , Article Pharmaceutical research ; Volume 30, Issue 1 , January , 2013 , Pages 41-59 ; 1573904X (ISSN) Haghjou, N ; Abdekhodaie, M. J ; Cheng, Y. L ; Sharif University of Technology
    2013
    Abstract
    To determine the outward permeability of retina-choroid-sclera (RCS) layer for different ophthalmic drugs and to develop correlations between drug physicochemical properties and RCS permeability. A finite volume model was developed to simulate pharmacokinetics in the eye following drug administration by intravitreal injection. The RCS permeability was determined for 32 compounds by best fitting the drug concentration-time profile obtained by simulation with previously reported experimental data. Multiple linear regression was then used to develop correlations between best fit RCS permeability and drugs physicochemical properties. The RCS drug permeabilities had values that ranged over 3 ×... 

    Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite

    , Article International Journal of Biological Macromolecules ; Volume 75 , April , 2015 , Pages 248-257 ; 01418130 (ISSN) Vakilian, S ; Mashayekhan, S ; Shabani, I ; Khorashadizadeh, M ; Fallah, A ; Soleimani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The cellular microenvironment can be engineered through the utilization of various nano-patterns and matrix-loaded bioactive molecules. In this study, a multilayer system of electrospun scaffold containing chitosan nanoparticles was introduced to overcome the common problems of instability and burst release of proteins from nanofibrous scaffolds. Bovine serum albumin (BSA)-loaded chitosan nanoparticles was fabricated based on ionic gelation interaction between chitosan and sodium tripolyphosphate. Suspension electrospinning was employed to fabricate poly-e{open}-caprolacton (PCL) containing protein-loaded chitosan nanoparticles with a core-shell structure. To obtain the desired scaffold... 

    Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds

    , Article Materials Science and Engineering C ; Volume 48 , March , 2015 , Pages 384-390 ; 09284931 (ISSN) Ardeshirzadeh, B ; Aboutalebi Anaraki, N ; Irani, M ; Roshanfekr Rad, L ; Shamshiri, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7 wt.%) indicated that the minimum diameter of nanofibers was found to be 85 nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH 5.3 and 7.4 indicated strong pH dependence. The... 

    Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    , Article Nanoscale ; Volume 7, Issue 11 , Feb , 2015 , Pages 5004-5013 ; 20403364 (ISSN) Mirsadeghi, S ; Dinarvand, R ; Ghahremani, M. H ; Hormozi-Nezhad, M. R ; Mahmoudi, Z ; Hajipour, M. J ; Atyabi, F ; Ghavami, M ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called "protein corona") upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal...