Loading...
Search for: metal
0.032 seconds

    Active microfluidic micromixer design using ionic polymer-metal composites

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 371-375 ; 9781728115085 (ISBN) Annabestani, M ; Mohammadzadeh, H ; Aghassizadeh, A ; Azizmohseni, S ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In most of the microfluidic applications, it is necessary to have a mixed fluid from the beginning, but in microchannels, due to facing with low Reynolds flows, the fluids flow in the channel by the laminar regimes. Hence the mixing process is a challenging problem and researchers are trying to present fast and reliable micromixers. In this paper, using Ionic Polymer-Metal Composites (IPMCs), an active micromixer has been designed. To investigate the appropriateness of IPMC, using experimental and simulation tests, we show that the IPMC actuator is a potential candidate as an active element of microfluidic micromixers  

    Activation of CX (=Cl, Br) bond in aryl halides toward the palladium-catalyzed Heck reaction using 2,6-bis(diphenylphosphino)pyridine

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 366 , January , 2013 , Pages 30-35 ; 13811169 (ISSN) Ataei, A ; Nadri, S ; Rafiee, E ; Jamali, S ; Joshaghani, M ; Sharif University of Technology
    2013
    Abstract
    The 2,6-bis(diphenylphosphino)pyridine/palladium catalytic system successfully catalyzes the Heck coupling reaction of less reactive aryl chlorides as well as aryl bromides with styrene to give the corresponding olefins in reasonable yields. TBAB (tetrabutylammoniumbromide) as an additive was found to be essential for these reactions. The results of Heck reaction exhibited a high selectivity (>99/1) favoring the trans product  

    Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine

    , Article Journal of Environmental Management ; Volume 233 , 2019 , Pages 660-672 ; 03014797 (ISSN) Mahmoodi, N. M ; Abdi, J ; Taghizadeh, M ; Taghizadeh, A ; Hayati, B ; Shekarchi, A. A ; Vossoughi, M ; Sharif University of Technology
    Academic Press  2019
    Abstract
    Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV–Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%).... 

    A critical study of the existing issues in manufacturing maintenance systems: can BIM fill the gap?

    , Article Computers in Industry ; Volume 131 , 2021 ; 01663615 (ISSN) Alvanchi, A ; TohidiFar, A ; Mousavi, M ; Azad, R ; Rokooei, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The use of smart and complicated technologies in manufacturing industries has brought new issues to the maintenance systems in recent years. In this research, an intensive literature review is performed to identify and classify these issues. Inspired by the recent advances that Building Information Modeling (BIM) has brought to the construction industry, the research proposes adopting BIM in manufacturing maintenance systems to address the existing issues. A list of BIM capabilities utilized for addressing maintenance issues of buildings is extracted from the literature. It is argued that these BIM capabilities can also solve similar maintenance issues found in manufacturing industries. A... 

    A comprehensive study on the complete charging-discharging cycle of a phase change material using intermediate boiling fluid to control energy flow

    , Article Journal of Energy Storage ; Volume 35 , 2021 ; 2352152X (ISSN) Hosseininaveh, H ; Mohammadi, O ; Faghiri, S ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The low melting and solidification rates of phase change materials (PCM), which traces back to their low thermal conductivity coefficient, has led the application of these materials to face limitations. This paper aims to explore the effectiveness of a novel method called intermediate boiling fluid (IBF) in speeding up the energy storage and transfer processes in PCMs during a complete charging-discharging cycle. Throughout this novel technique, paraffin and acetone are utilized as PCM and IBF, respectively. In the solidification process, there is no direct contact between the cold source and the molten paraffin, while acetone, as an intermediate fluid, is being boiled via absorbing... 

    A comparison of low carbon steel and Al-Mg alloy sheets in quasi-static tearing collisions

    , Article Materials and Design ; Volume 30, Issue 4 , 2009 , Pages 1333-1336 ; 02641275 (ISSN) Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Through tearing test, the absorbed energy of a low carbon steel and an Al-Mg alloy sheets are compared. The tests are carried out quasi-statically using the wedge tools with different angles. Also, the effects of the inclination angle of sheet to vertical and angle between normal to sheet and edge of wedge are investigated on the energy absorption of both the steel and aluminum alloy. The results show that with increasing the later angles, the absorbed energy is decreased and with increasing the wedge angle, the energy is increased. Comparing the absorbed energy of the sheets with the same thicknesses, it is found that the energy absorption of the steel is higher than that of the aluminum... 

    A comparison between the corrosion resistances of High Velocity Oxy Fuel (HVOF) sprayed coatings and hard chromium coatings

    , Article Materials Science Forum, 1 September 2010 through 3 September 2010, Seoul ; Volume 673 , 2011 , Pages 173-178 ; 02555476 (ISSN) ; 9783037850183 (ISBN) Saghi Beyragh, M. R ; Khameneh Asl, S ; Vasfpour, R ; Tazesh, F ; Khallagi, P ; Sharif University of Technology
    2011
    Abstract
    HVOF-sprayed coatings (WC-17%Co) and hard chromium coatings corrosion resistances have been compared through electrochemical polarization test in 3.5% NaCl solution. WC-17%Co alloy coatings were deposited on mild steel substrates by High Velocity Oxy-Fuel (HVOF) spray process. The layers of standard and crack free hard chromium coatings were prepared by using Direct Current (DC) and Pulse Current (PC) electroplating process on the mild steel substrates. Hard chromium coatings was characterized as a reference material, to verify whether HVOF-sprayed coatings are suitable as a hard chromium coatings replacement. The microstructure of the coatings was examined by OM, SEM and XRD. Standard hard... 

    A comparison between cold-welded and diffusion-bonded Al/Cu bimetallic rods produced by ECAE process

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 10 , 2013 , Pages 3014-3023 ; 10599495 (ISSN) Eslami, P ; Karimi taheri, A ; Zebardast, M ; Sharif University of Technology
    2013
    Abstract
    In this research, the application of equal channel angular extrusion process to produce both the cold-welded and diffusion-bonded Al/Cu bimetallic rods is assessed. The joints shear strength for both of the methods are measured and compared. The microstructure examinations were also carried out using scanning electron microscope equipped with EDX system and x-ray diffraction analysis. The results exhibit that the strength of the bond in cold-welded specimens is dependent on the amount of stretch and pressure at the materials interface. But in the diffusion-bonded specimens, it is depended on the struggle between the oxidation rate of the mating surfaces accompanied by inter-metallic... 

    A comparatiwe study of heat-treated Ag: SiO2nanocomposites synthesized by cosputtering and sol-gel methods

    , Article Surface and Interface Analysis ; Volume 41, Issue 3 , 2009 , Pages 157-163 ; 01422421 (ISSN) Sangpoyr, P ; Babapoyr, A ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this work, we compared formation and properties of heat-treated Ag nanoparticles in silica matrix synthesized by RF- reactive magnetron cosputtering and sol-gel methods separately. The sol-gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV-visible Spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol -gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS... 

    A comparative study on hydrogen interaction with defective graphene structures doped by transition metals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 60 , June , 2014 , pp. 104-111 ; ISSN: 13869477 Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    Abstract
    In the present work, the interaction of hydrogen molecules with defective graphene structures doped by transition metal (TM) atoms is investigated by using first principles density functional theory (DFT). Defective graphene structures include Stone-Wales (SW), 585 and 555-777 and transition metals include early TMs, i.e. scandium (Sc), titanium (Ti) and vanadium (V). It is found that in comparison with the pristine graphene, presence of defects significantly enhances the metal binding. Among three defects, 585 divacancy leads to the strongest binding between graphene and metal. Hydrogen adsorption is then evaluated by sequential addition of hydrogen molecules to the system. The results... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    A comparative study of the electrooxidation of ethylene glycol on transition metal electrodes in alkaline solution

    , Article Journal of New Materials for Electrochemical Systems ; Volume 15, Issue 4 , 2012 , Pages 255-263 ; 14802422 (ISSN) Danaee, I ; Jafarian, M ; Shahnazi Sangachin, A. A ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Electrodes made of group VIII and IB metals were examined for their redox process and electrocatalytic activities towards the oxidation of ethylene glycol in alkaline solutions. The method of cyclic voltammetery (CV) and Open circuit potentials measurement (OCP) was employed. It is found that considerable electrooxidation current are observed for silver and copper but lower anodic overpotential for oxidation is obtained for gold and platinum. Oxide layer produced on the surface of all electrodes in alkaline solution under anodic scan participates in ethylene glycol electrooxidation. Oxidation current observed in the reverse scans for platinum and gold are higher than those observed in... 

    A combined upper bound and finite element model for prediction of velocity and temperature fields during hot rolling process

    , Article International Journal of Mechanical Sciences ; Volume 50, Issue 9 , 2008 , Pages 1423-1431 ; 00207403 (ISSN) Serajzadeh, S ; Mahmoodkhani, Y ; Sharif University of Technology
    Elsevier Ltd  2008
    Abstract
    In this work, velocity field and temperature distribution during hot strip rolling are predicted, employing a combined upper bound and finite element analysis. At first, a velocity field is proposed utilizing the principle of volume constancy, and then the velocity field is modified by means of upper bound theorem. At the same time, a thermal-finite element analysis is utilized to determine temperature distribution within the metal as well as to calculate the flow stress of deforming material. The model is capable of considering the effects of different factors on temperature and velocity distributions such as rolling speed and interface heat transfer coefficient. In order to verify the... 

    A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles

    , Article Analytica Chimica Acta ; Volume 882 , July , 2015 , Pages 58-67 ; 00032670 (ISSN) Ghasemi, F ; Hormozi-Nezhad, M.R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs' shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV-vis spectra of AuNPs... 

    A circuit model for analysis of metal-insulator-metal plasmonic complementary split-ring resonators

    , Article Journal of Lightwave Technology ; Vol. 32, issue. 15 , August , 2014 , pp. 2659-2665 ; ISSN: 07338724 Bahadori, M ; Eshaghian, A ; Mehrany, K ; Sharif University of Technology
    Abstract
    A circuit model based on the transmission line theory is proposed to analyze the recently introduced metal-insulator-metal (MIM) complementary split-ring resonators (CSRRs). It is shown that integer and noninteger modes of CSRRs can be characterized by transmission line models with short- and open-circuited terminals. The proposed circuit model is then extended to incorporate side-coupling effects between the CSRRs and straight MIM waveguides. Thereby, simple closed-form expressions are provided for the coupling quality factor. It is shown that waveguide resonator structures based on CSRRs at specific resonance frequency and bandwidth can be smaller than waveguide resonator structures based... 

    Achieving subwavelength field confinement in sub-terahertz regime by periodic metallodielectric waveguides

    , Article Optics Express ; Volume 27, Issue 4 , 2019 , Pages 4226-4237 ; 10944087 (ISSN) Tehranian, A ; Ahmadi Boroujeni, M ; Abbaszadeh, A ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    In this paper, we report on a periodic metallo-dielectric structure that supports geometry-induced surface plasmons in the sub-terahertz regime. The proposed structure is made up of a dielectric-coated metallic grating sandwiched by parallel metal plates. Based on the modal analysis of 2D and 3D structures, the impact of a metal cladding and a customized dielectric coating on the dispersion relation and field distribution of the guided surface wave is investigated. It is found that modal field confinement is improved in the presence of a metal cladding without narrowing the operational bandwidth of the waveguide. Moreover, a customized subwavelength-sized dielectric coating based on... 

    Achieving subwavelength field confinement in sub-terahertz regime by periodic metallodielectric waveguides

    , Article Optics Express ; Volume 27, Issue 4 , 2019 , Pages 4226-4237 ; 10944087 (ISSN) Tehranian, A ; Ahmadi Boroujeni, M ; Abbaszadeh, A ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    In this paper, we report on a periodic metallo-dielectric structure that supports geometry-induced surface plasmons in the sub-terahertz regime. The proposed structure is made up of a dielectric-coated metallic grating sandwiched by parallel metal plates. Based on the modal analysis of 2D and 3D structures, the impact of a metal cladding and a customized dielectric coating on the dispersion relation and field distribution of the guided surface wave is investigated. It is found that modal field confinement is improved in the presence of a metal cladding without narrowing the operational bandwidth of the waveguide. Moreover, a customized subwavelength-sized dielectric coating based on... 

    Ab-Initio calculations of the CO adsorption and dissociation on substitutional Fe-Cu surface alloys relevant to Fischer-Tropsch Synthesis: Bcc-(Cu)Fe(100) and fcc-(Fe)Cu(100)

    , Article Surface and Interface Analysis ; Volume 45, Issue 7 , 2013 , Pages 1081-1087 ; 01422421 (ISSN) Elahifard, M ; Fazeli, E ; Joshani, A ; Gholami, M ; Sharif University of Technology
    Abstract
    Direct CO dissociation is seen the main path of the first step in the Fischer-Tropsch Synthesis (FTS) on the reactive iron surfaces. Cu/Fe alloy film is addressed with various applications over face-centered-cubic (fcc)-Cu and body-centered-cubic (bcc)-Fe in the FTS, i.e. preventing iron carbide formation (through direct CO dissociation) by moderating the surface reactivity and facilitating the reduction of iron surfaces, respectively. In this study by density functional theory, the stable configurations of CO molecule on various Cu/Fe alloys over fcc-Cu(100) and bcc-Fe(100) surfaces with different CO coverage (25% and 50%) have been evaluated. Our results showed that the ensemble effect... 

    A 10-W X-Band Class-F High-Power Amplifier in a 0.25-μm GaAs pHEMT Technology

    , Article IEEE Transactions on Microwave Theory and Techniques ; 2020 Alizadeh, A ; Yaghoobi, M ; Meghdadi, M ; Medi, A ; Kiaei, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this article, a design methodology is presented to realize integrated class-F high-power amplifiers (HPAs). A harmonic-control network (HCN) is proposed to present short- and open-circuit impedances to each transistor employed in the output stage of the HPA at 2f_0 and 3f_0 frequencies. The HCN absorbs the parasitic capacitance of the transistor and lends itself to be absorbed in the matching and power combiner networks, reducing the die area of the HPA. A proof-of-concept 9.7-10.3-GHz class-F HPA was designed and implemented in a 0.25-μm GaAs pHEMT technology with VDD of 6 V. The designed HPA consists of two amplifying stages, and its output stage includes 16 transistors in parallel to... 

    3D ternary Ni: XCo2- xP/C nanoflower/nanourchin arrays grown on HCNs: A highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction

    , Article Nanoscale ; Volume 12, Issue 30 , 2020 , Pages 16123-16135 Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Over the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts. Nevertheless, finding a straightforward and effective route to prepare efficient catalysts with unique structural features and optimal supports still is a big challenge. Among the various candidates, metal-organic framework (MOF)-derived materials show great advantages as new kinds of active non-precious catalysts. On the other hand, the controllable integration of MOFs and carbon-based nanomaterials leads to further...