Loading...
Search for: metal-nanoparticles
0.016 seconds
Total 213 records

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles

    , Article Talanta ; Volume 226 , 2021 ; 00399140 (ISSN) Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Pedrini, A ; Verucchi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Effect of material and population on the delivery of nanoparticles to an atherosclerotic plaque: a patient-specific in silico study

    , Article Langmuir ; Volume 37, Issue 4 , 2021 , Pages 1551-1562 ; 07437463 (ISSN) Amani, A ; Shamloo, A ; Barzegar, S ; Forouzandehmehr, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Coronary artery disease (CAD) is the prevalent reason of mortality all around the world. Targeting CAD, specifically atherosclerosis, with controlled delivery of micro and nanoparticles, as drug carriers, is a very proficient approach. In this work, a patient-specific and realistic model of an atherosclerotic plaque in the left anterior descending (LAD) artery was created by image-processing of CT-scan images and implementing a finite-element mesh. Next, a fluid-solid interaction simulation considering the physiological boundary conditions was conducted. By considering the simulated force fields and particle-particle interactions, the correlation between injected particles at each cardiac... 

    Stable Photodetectors based on fstable photodetectors based on formamidinium lead iodide quantum well perovskite nanoparticles fabricated with excess organic cations.ormamidinium lead iodide quantum well perovskite nanoparticles fabricated with excess organic cations

    , Article ACS Applied Nano Materials ; Volume 4, Issue 8 , 2021 , Pages 7788-7799 ; 25740970 (ISSN) Hasanzadeh Azar, M ; Mohammadi, M ; Rezaei, N.T ; Aynehband, S ; Shooshtari, L ; Mohammadpour, R ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal halide perovskite nanoparticles have recently attracted immense interest for photodetectors due to their outstanding optical and electronic properties such as high carrier diffusion length, tunable band gap (light absorption range), and high photoluminescence (PL) efficiency. Although significant progress has been achieved in the development of perovskites, their stability is yet to be addressed. To improve the stability and quantum efficiency of FAPbI3 perovskite nanocrystals, we present a room temperature protocol to fabricate fully passivated and stable FAPbI3 nanocrystals via 2D growth in the presence of amine ligands and an excess amount of the organic cations. The crystallization... 

    Development of a colorimetric sensor array based on monometallic and bimetallic nanoparticles for discrimination of triazole fungicides

    , Article Analytical and Bioanalytical Chemistry ; April , 2021 ; 16182642 (ISSN) Kalantari, K ; Fahimi Kashani, N ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Due to the widespread use of pesticides and their harmful effects on humans and wildlife, monitoring their residual amounts in crops is critically essential but still challenging regarding the development of high-throughput approaches. Herein, a colorimetric sensor array has been proposed for discrimination and identification of triazole fungicides using monometallic and bimetallic silver and gold nanoparticles. Aggregation-induced behavior of AgNPs, AuNPs, and Au-AgNPs in the presence of four triazole fungicides produced a fingerprint response pattern for each analyte. Innovative changes to the metal composition of nanoparticles leads to the production of entirely distinct response patterns... 

    Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots

    , Article Microchimica Acta ; Volume 187, Issue 1 , 2020 Afsharipour, R ; Haji Shabani, A. M ; Dadfarnia, S ; Kazemi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    A sensitive fluorometric assay is described for the direct determination of the antibiotic sulfadiazine. Silver nanoparticles placed on graphene quantum dots (Ag NP-GQDs) were synthesized by reduction of AgNO3 with sodium borohydride in the presence of GQDs. The growth of Ag NPs on the surface of the GQDs causes quenching of the blue fluorescence of the GQDs with an emission maximum at 470 nm by surface-enhanced energy transfer. If sulfadiazine is added, it interacts with Ag NPs and fluorescence is restored. Under optimal conditions, the fluorescence increases linearly in the sulfadiazine concentration range of 0.04–22.0 μM. The detection limit is 10 nM with relative standard deviations of... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process

    , Article Materials Science and Engineering A ; Volume 786 , 2020 Akbarpour, M. R ; Mousa Mirabad, H ; Khalili Azar, M ; Kakaei, K ; Kim, H .S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Hybrid-reinforced metals are novel composite materials in which nano-phases including nanoparticles and nanotubes/nanosheets are used simultaneously to reinforce metals or alloys to enhance physical, mechanical, wear and other properties. In this research, Cu/(CNT-SiC) hybrid nanocomposite was synthesized using flake powder metallurgy and spark plasma sintering method and the effects of hybrid reinforcements on microstructural, wear and corrosion properties of the developed material were investigated and compared with those of copper. Microstructural characterization showed reduction of average grain size from 419 to 307 nm and increase of low angle grain boundaries with the introduction and... 

    Au and Pt nanoparticles supported on Ni promoted MoS2 as efficient catalysts for p-nitrophenol reduction

    , Article Journal of Water Process Engineering ; Volume 34 , 2020 Akbarzadeh, E ; Bahrami, F ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In present study, an efficient method was used to synthesis Au and Pt nanoparticles on Ni modified MoS2 (MNi/MoS2 (M = Au and Pt). The morphology and structure of the prepared products were characterized using different microscopic and spectroscopic methods. The as-synthesized MNi/MoS2 nanocomposites were applied for catalytic reduction of p-nitrophenol (P-NP) in the presence of NaBH4. P-NP is one of the prevalent contaminants in wastewaters, while its corresponding aromatic amine (4-aminophenol) is a precious intermediate for manufacturing of important materials such as pharmaceuticals. The obtained catalytic results indicated that noble metal nanoparticles significantly affect catalytic... 

    Nanomaterial-assisted pyrolysis of used lubricating oil and fuel recovery

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Alavi, E ; Abdoli, M. A ; Khorasheh, F ; Nezhadbahadori, F ; Bayandori Moghaddam, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Used lubricating oil (ULO) is a heavy mixture of various hydrocarbons and needs to be treated before discharging. Considering ULO nature, it is more favorable to recover lighter hydrocarbon cuts from ULO, which not only improves the whole process economically, but also prevents the emission of hardly decomposable hydrocarbons into the environment. In this research, the potential of pyrolysis method for ULO recovery was studied. Furthermore, graphene nanoplatelets (GNP), γ- Fe2O3 and ZnO nanoparticles were used to improve the kinetics of the process and their impacts on the final product quality were evaluated. Based on the results, adding nanomaterials increased the tendency to produce gas... 

    Review - Towards the two-dimensional hexagonal boron nitride (2D h-BN) electrochemical sensing platforms

    , Article Journal of the Electrochemical Society ; Volume 167, Issue 12 , 2020 Angizi, S ; Khalaj, M ; Alem, S. A. A ; Pakdel, A ; Willander, M ; Hatamie, A ; Simchi, A ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Electrochemical sensing performance of two-dimensional hexagonal boron nitride (2D h-BN) has traditionally been suppressed by their intrinsic electrical insulation and deficient electron transportation mechanism. However, the excellent electrocatalytic activity, high specific surface area, N- and B-active edges, structural defects, adjustable band gap through interaction with other nanomaterials, and chemical functionalization, makes 2D h-BN ideal for many sensing applications. Therefore, finding a pathway to modulate the electronic properties of 2D h-BN while the intrinsic characteristics are well preserved, will evolve a new generation of highly sensitive and selective electrochemical... 

    Gold nanoparticles functionalized with fullerene derivative as an effective interface layer for improving the efficiency and stability of planar perovskite solar cells

    , Article Advanced Materials Interfaces ; Volume 7, Issue 21 , 2020 Chavan, R. D ; Prochowicz, D ; Bończak, B ; Tavakoli, M. M ; Yadav, P ; Fiałkowski, M ; Hong, C. K ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Titanium dioxide (TiO2) is an extensively used electron transporting layer (ETL) in n–i–p perovskite solar cells (PSCs). Although, TiO2 ETL experiences the high surface defect together with low electron extraction ability, which causes severe energy loss and poor stability in the PSC. In this study, a new intermediate layer consisting of gold nanoparticles functionalized with fully conjugated fullerene C60 derivative (C60-BCT@Au NPs) that enhances the interfacial contact at ETL/perovskite interface leading to a perovskite film with improved crystallinity and morphology is reported. Moreover, the studies demonstrate that the interface modification of the TiO2 ETL with C60-BCT@Au NPs... 

    Synthesis and characterization of mixed–metal oxide nanoparticles (cenio3, cezro4, cecao3) and application in adsorption and catalytic oxidation–decomposition of asphaltenes with different chemical structures

    , Article Petroleum Chemistry ; Volume 60, Issue 7 , 2020 , Pages 731-743 Dehghani, F ; Ayatollahi, S ; Bahadorikhalili, S ; Esmaeilpour, M ; Sharif University of Technology
    Pleiades Publishing  2020
    Abstract
    Abstract: This study investigates the catalytic activity of mixed–metal oxide nanoparticles with different surface acidities on asphaltene adsorption followed by catalytic oxidation–decomposition. Three different types of mixed–metal oxide nanoparticles (CeNiO3, CeCaO3 and CeZrO4) were synthesized, and their size, structure, and acid properties were characterized by field–emission scanning electron microscopy (FE–SEM), energy-dispersive X-ray spectroscopy (EDX), the high–resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurement and ammonia temperature-programmed desorption (NH3–TPD). Asphaltenes were extracted... 

    Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate

    , Article Energy ; Volume 191 , 2020 Ghofrani Isfahani, P ; Baniamerian, H ; Tsapekos, P ; Alvarado Morales, M ; Kasama, T ; Shahrokhi, M ; Vossoughi, M ; Angelidaki, I ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Lignocellulosic materials are recalcitrant to bioconversion, due to their rigid physiochemical structure. In this work, the effects of Fe2O3–TiO2 and NiO–TiO2 nanoparticles (NPs) and FeCl3 and NiCl2 salts, on the anaerobic digestion (AD) of wheat straw have been investigated. For this purpose, metal oxide-TiO2 NPs were synthesized and fully characterized. Results showed that addition of 0.252 mg of NiO–TiO2/g total solids (TS) to batch assays resulted in increase of soluble chemical oxygen demand (COD) and 67% increase in volatile fatty acids (VFAs) concentration compared to control tests during the first 4 days of experiments. These results indicate that hydrolysis and acidogenesis rates... 

    Metal-organic framework-templated synthesis of t-ZrO2 /γ-Fe2O3 supported AgPt nanoparticles with enhanced catalytic and photocatalytic properties

    , Article Materials Research Bulletin ; Volume 126 , 2020 Gholizadeh Khasevani, S ; Faroughi, N ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A highly selective and effective catalyst and photocatalyst based on Ag, Pt, AgPt nanoparticles (NPs) on the surface of γ-Fe2O3 /t-ZrO2 nanocomposite which was derived from Fe-metal organic framework (Fe-MIL-88A) and Zr-metal organic framework (Zr-UiO-66) was developed. A green synthesis method was used for synthesis of binary nanocomposite (M = Ag, Pt, and Ag@Pt NPs)@γ-Fe2O3/t-ZrO2 and a new composite of γ-Fe2O3, t-ZrO2 structures which was made up by annealing under a nitrogen gas flow. The catalytic potential of the as-synthesized samples were considered toward the reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) by NaBH4 solution at 25 °C and different reaction times. For the... 

    Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite

    , Article Chemosphere ; Volume 247 , May , 2020 Molavi, H ; Neshastehgar, M ; Shojaei, A ; Ghashghaeinejad, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption–desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic... 

    Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4

    , Article Solar Energy ; Volume 211 , 15 November , 2020 , Pages 100-110 Moradi, M ; Khorasheh, F ; Larimi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Pt@Bi-TiO2 photocatalysts with different Bi (0–5 wt%) and Pt (0–2 wt%) contents were prepared by a two-step sol-gel and photo-deposition technique and were used in photo-reduction of CO2. The synthesized catalysts were characterized by X-ray powder diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), scanning and transmission electron microscopy (SEM and TEM), nitrogen sorption measurement (BET), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and photoluminescence spectroscopy (PL). CO2 photo-reduction results revealed that the introduction of Bi into TiO2 structure and subsequent loading of Pt on its surface significantly increased the methane yield....