Loading...
Search for: metal-nanoparticles
0.013 seconds
Total 213 records

    Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 135, Issue 5 , 2022 , Pages 2851-2865 ; 18785190 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, graphene oxide/gold/methylene blue (GO/Au/MB) ternary composites were synthesized and characterized through UV–vis, FTIR, XRD, XPS, SEM, and TEM analyses towards plasmon-enhanced singlet oxygen (1O2) generation. Through using gold nanoparticles and MB photosensitizers, the visible light adsorption capability of GO was enhanced by 115%. Moreover, applying this ternary composite as a photocatalyst under visible light interestingly revealed a drastic step-increase of 14% (i.e., from 9 to 23%) in the conversion of photooxygenation of Anthracene. This behavior was rationalized using finite-difference time-domain (FDTD) simulations which confirms the plasmonic field of gold... 

    Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Volume 46, Issue 6 , December , 2015 , Pages 2584-2592 ; 10735615 (ISSN) Vahdatkhah, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer Boston  2015
    Abstract
    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of... 

    Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots

    , Article Microchimica Acta ; Volume 187, Issue 1 , 2020 Afsharipour, R ; Haji Shabani, A. M ; Dadfarnia, S ; Kazemi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    A sensitive fluorometric assay is described for the direct determination of the antibiotic sulfadiazine. Silver nanoparticles placed on graphene quantum dots (Ag NP-GQDs) were synthesized by reduction of AgNO3 with sodium borohydride in the presence of GQDs. The growth of Ag NPs on the surface of the GQDs causes quenching of the blue fluorescence of the GQDs with an emission maximum at 470 nm by surface-enhanced energy transfer. If sulfadiazine is added, it interacts with Ag NPs and fluorescence is restored. Under optimal conditions, the fluorescence increases linearly in the sulfadiazine concentration range of 0.04–22.0 μM. The detection limit is 10 nM with relative standard deviations of... 

    Numerical study of material properties, residual stress and crack development in sintered silver nano-layers on silicon substrate

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1037-1047 ; 10263098 (ISSN) Keikhaie, M ; Movahhedy, M. R ; Akbari, J ; Alemohammad, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    In order to improve the performance of thin film devices, it is necessary to characterize their mechanical, as well as electrical, properties. In this work, a model is developed for analysis of the mechanical and electrical properties and the prediction of residual stresses in thin films of silver nanoparticles deposited on silicon substrates. The model is based on inter-particle diffusion modeling and finite element analysis. Through simulation of the sintering process, it is shown how the geometry, density, and electrical resistance of the thin film layers are changed by sintering conditions. The model is also used to approximate the values of Young's modulus and the generated residual... 

    Characterisation of nanocrystalline sulfated titania modified with transition metals and aluminum as solid acids for esterification

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 41, Issue 1 , 2016 , Pages 57-66 ; 14686783 (ISSN) Rahman Setayesh, S ; Abolhasani, E ; Ghasemi, S ; Sharif University of Technology
    Science Reviews 2000 Ltd  2016
    Abstract
    TiO2, transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn)- and aluminum-doped TiO2 nanoparticles were prepared by the sol-gel technique. The sulfated catalysts were prepared by the impregnation method with H2SO4 solution. The catalysts were characterised by X-ray diffraction (XRD), BET surface area measurement, diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) techniques. The sulfate content of the metal-incorporated samples was considerably higher than for SO4 2-/TiO2. The metal doping brought about a considerable reduction in the extent of sulfate loss from the catalyst surface due to the wide dispersion on the surface. The SO4 2-/TiO2 and SO4 2-/M/TiO2... 

    Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II)

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 36, Issue 5 , May , 2015 , Pages 742-749 ; 02539837 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Sharif University of Technology
    Science Press  2015
    Abstract
    Hollow microblocks of [Zn(anic)2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid (Hanic) and zinc (II) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC12H10N4O4, was determined by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 °C for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N2 adsorption-desorption analysis showed that the... 

    Application of the combined neuro-computing, fuzzy logic and swarm intelligence for optimization of compocast nanocomposites

    , Article Journal of Composite Materials ; Volume 49, Issue 13 , 2015 , Pages 1653-1663 ; 00219983 (ISSN) Tofigh, A. A ; Rahimipour, M. R ; Shabani, M. O ; Davami, P ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In the last few years, an increasing attention has been paid to the issues of saving energy and reducing the manufacturing costs in the transport industry which necessitates further efforts to replace traditional materials like steel with lightweight materials such as plastics, aluminum, magnesium, and composites. Metal matrix nanocomposites have turned into an established material in today's industry with an ongoing expansion in their field of applications. In this study, the formation of nanoparticle-aluminum metal matrix composites is described by compocast processing from nanoparticle Al2O3 and the A356 aluminum alloy. In order to optimize the processing parameters, a novel approach is... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    , Article Nanoscale ; Volume 7, Issue 11 , Feb , 2015 , Pages 5004-5013 ; 20403364 (ISSN) Mirsadeghi, S ; Dinarvand, R ; Ghahremani, M. H ; Hormozi-Nezhad, M. R ; Mahmoudi, Z ; Hajipour, M. J ; Atyabi, F ; Ghavami, M ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called "protein corona") upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal... 

    Supercritical synthesis of a magnetite-reduced graphene oxide hybrid with enhanced adsorption properties toward cobalt & strontium ions

    , Article RSC Advances ; Volume 6, Issue 17 , 2016 , Pages 13898-13913 ; 20462069 (ISSN) Tayyebi, A ; Outokesh, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    The current study presents a supercritical synthesis of magnetite-reduced graphene oxide (M-RGO) in methanol media, in which Fe3O4 nanoparticles are simultaneously formed, surface modified and decorated on the surface of the reduced graphene oxide. Simulations using density functional theory, which were performed using the M06-2x/cc-pVDZ level of theory, indicate that upon adsorption of a Fe3O4 cluster on the graphene, the overall charge on the graphene surface becomes about -0.0236e, indicating charge transfer from the Fe3O4 cluster to the graphene surface. Instrumental and chemical analyses exhibited the formation of strong bonds between Fe3O4 and graphene, through C-O-Fe and C-Fe bridges.... 

    The effect of sol-gel surface modified silver nanoparticles on the protective properties of the epoxy coating

    , Article RSC Advances ; Volume 6, Issue 23 , 2016 , Pages 18996-19006 ; 20462069 (ISSN) Ghazizadeh, A ; Haddadi, S. A ; Mahdavian, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In this study, the effect of surface modified silver nanoparticles on the corrosion protection of an epoxy coating on mild steel was studied. An organosilane (3-methoxy silyl propyl metacrylate) was used as a surface modifier to increase the dispersability of the inorganic nanoparticles in the organic epoxy coating matrix. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the surface modified nanoparticles. Differential scanning colorimetry (DSC) was employed to study the effects of modified and unmodified nano-silver on the curing heat and glass transition temperature of the epoxy coatings. Salt spray and electrochemical impedance... 

    Facile and ultra-sensitive voltammetric electrodetection of Hg2+in aqueous media using electrodeposited AuPtNPs/ITO

    , Article Analytical Methods ; Volume 13, Issue 24 , 2021 , Pages 2688-2700 ; 17599660 (ISSN) Bagheri Hariri, M ; Siavash Moakhar, R ; Sharifi Abdar, P ; Zargarnezhad, H ; Shone, M ; Rahmani, A. R ; Moradi, N ; Niksefat, V ; Shayar Bahadori, K ; Dolati, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of... 

    Multi-response optimization followed by multivariate calibration for simultaneous determination of carcinogenic polycyclic aromatic hydrocarbons in environmental samples using gold nanoparticles

    , Article RSC Advances ; Volume 6, Issue 106 , 2016 , Pages 104254-104264 ; 20462069 (ISSN) Rezaiyan, M ; Parastar, H ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    In this study, a multivariate-based strategy was developed for simultaneous determination of thirteen carcinogenic polycyclic aromatic hydrocarbons (PAHs) in water samples using gold nanoparticles (AuNPs) as solid-phase extraction (SPE) sorbent combined with gas chromatography (GC). The extraction technique is based on the strong affinity between citrate-capped AuNPs and PAHs. Furthermore, characterization of AuNPs was performed by UV-vis spectroscopy and transmission electron microscopy (TEM) techniques. A rotatable central composite design (CCD) combined with multiple linear regression (MLR) was used for designing the extraction procedure and developing models using the GC peak areas of 13... 

    Synthesis and characterization of mixed–metal oxide nanoparticles (cenio3, cezro4, cecao3) and application in adsorption and catalytic oxidation–decomposition of asphaltenes with different chemical structures

    , Article Petroleum Chemistry ; Volume 60, Issue 7 , 2020 , Pages 731-743 Dehghani, F ; Ayatollahi, S ; Bahadorikhalili, S ; Esmaeilpour, M ; Sharif University of Technology
    Pleiades Publishing  2020
    Abstract
    Abstract: This study investigates the catalytic activity of mixed–metal oxide nanoparticles with different surface acidities on asphaltene adsorption followed by catalytic oxidation–decomposition. Three different types of mixed–metal oxide nanoparticles (CeNiO3, CeCaO3 and CeZrO4) were synthesized, and their size, structure, and acid properties were characterized by field–emission scanning electron microscopy (FE–SEM), energy-dispersive X-ray spectroscopy (EDX), the high–resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurement and ammonia temperature-programmed desorption (NH3–TPD). Asphaltenes were extracted... 

    Backscattering-based detection scheme for dark-field optical tweezers

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 6 , 2019 , Pages 1587-1593 ; 07403224 (ISSN) Samadi, A ; Mousavi, S. M ; Hajizadeh, F ; Reihani, S. N. S ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    Laser nanomanipulation by metallic nanoparticles, which are smaller than the diffraction limit, has become a great interest, especially in the manipulation of unstained biological samples. However, they are hard to image in bright-field microscopy, because of the diffraction limit. Thus, incorporation of a dark-field microscopy technique with optical tweezers would be an inevitable choice, enforcing the use of the backward scattering detection scheme. Here in this paper, we have taken into account the reflected light from the coverslip along with backscattered light from the trapped particle to validate and reveal some precautions of using this detection scheme, based on Mie-Debye... 

    Exhaustive denitrification via chlorine oxide radical reactions for urea based on a novel photoelectrochemical cell

    , Article Water research ; Volume 170 , 2020 , Pages 115357- Shen, Z ; Zhang, Y ; Zhou, C ; Bai, J ; Chen, S ; Li, J ; Wang, J ; Guan, X ; Rahim, M ; Zhou, B ; Sharif University of Technology
    NLM (Medline)  2020
    Abstract
    Urea is a major source of nitrogen pollution in domestic sewage and its denitrification is difficult since it is very likely to be converted into ammonia or nitrate instead of expected N2. Herein, we propose an exhaustive denitrification method for urea via the oxidation of amine/ammonia-N with chlorine oxide radical, which induced from a bi-functional RuO2//WO3 anode, and the highly selective reduction of nitrate-N on cathode in photoelectrochemical cell (PEC). Under illumination, the WO3 photoanode side promotes the quantities hydroxyl and reactive chlorine radical, and these radicals are immediately combined to stronger chlorine oxide radical by RuO2 side, which obviously enhances the... 

    First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Morad, R ; Akbari, M ; Rezaee, P ; Koochaki, A ; Maaza, M ; Jamshidi, Z ; Sharif University of Technology
    Nature Research  2021
    Abstract
    From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt... 

    Point-of-use rapid detection of sars-cov-2: Nanotechnology-enabled solutions for the covid-19 pandemic

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 14 , 2020 , Pages 1-23 Rabiee, N ; Bagherzadeh, M ; Ghasemi, A ; Zare, H ; Ahmadi, S ; Fatahi, Y ; Dinarvand, R ; Rabiee, M ; Ramakrishna, S ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in... 

    Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria

    , Article Materials ; Volume 15, Issue 5 , 2022 ; 19961944 (ISSN) Rabiee, N ; Ahmadi, S ; Akhavan, O ; Luque, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity...