Loading...
Search for: micromixing
0.009 seconds
Total 40 records

    Rheology Effects on Reaction-diffusion Mechanisms in a Y-shaped Micro Fluidic Mixer

    , M.Sc. Thesis Sharif University of Technology Hellisaz, Hamed (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak ($item.subfieldsMap.e)
    Abstract
    Numerous applications of Lab on a Chips (LOCs) in chemical/biochemical analyses as well as the emergence of advanced methods for their manufacture attracts many researchers’ attention to these micro instruments. Low sample volume consumption and their high controllability are accounted as the main advantage of LOC systems. Micromixers are among the main components of any LOC in which mixing and/or reaction among two components occur. Micromixers have many potential applications in biological and medical sciences, and so they are repeatedly charged by biofluids. Due to sensibility of biofluids, to avoid disintegration, applying electroosmotic flow instead of pressure-induced flow has priority... 

    Continuous Synthesis of Medicine Utilizing Catalyst Through a Microreactor System

    , M.Sc. Thesis Sharif University of Technology Erfani Gahrooei, Amir Reza (Author) ; Kazemeini, Mohammad (Supervisor) ; Khorasheh, Farhad (Supervisor) ; Hosseinpour, Vahid (Co-Supervisor)
    Abstract
    Nowadays, the use of microreactors is receiving a great deal of attention due to the unique characteristics of such systems, such as high surface-to-volume ratio, low material loss, greater safety, and minimizing mass and heat transfer limitations. In this study, the optimization of the continuous-flow synthesis of Plavix by Cu-MOF heterogeneous catalyst utilizing a glass microreactor was investigated. Structural characteristics of the catalyst were investigated using X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and BET surface area studies to describe the structure and morphology of the catalyst. In order to build... 

    Continuous Catalytic Synthesis of Medicine Through a Micro-Reactor System

    , M.Sc. Thesis Sharif University of Technology Jahangirifard, Shayan (Author) ; Kazemeini, Mohammad (Supervisor) ; Hosseinpour, Vahid (Co-Supervisor)
    Abstract
    In the past decades, the production of various active pharmaceutical ingredients in batch processes was common. But today, the approach of pharmaceutical companies has changed and the use of the equipment and continuous processes such as microreactors has become common for reasons of safety, better mass and heat transfer, reduction of operators, and ease of scale-up. Unlike many top-selling drugs such as Ibuprofen and Artemisinin, Clopidogrel, the world's third best-selling drug needed by cardiac patients, has been manufactured only in batch processes. Due to the increase in the average age of the population, the urgent need for the use of Plavix (clopidogrel) has increased in recent years.... 

    Manufacturing, Evaluation, and Optimization of Microreactor for Continuous Synthesis of Pharmaceutical

    , M.Sc. Thesis Sharif University of Technology Mirchi, Arman (Author) ; Kazemeini, Mohammad (Supervisor) ; Hosseinpour, Vahid (Co-Supervisor)
    Abstract
    Clopidogrel, as an antiplatelet medicine, is currently one of the most widely used medicines to reduce the risk of stroke and prevent the formation of blood clots for heart patients all over the world. This medicine is still produced using the conventional approach of drug production, i.e. batch method. On the other hand, due to the many advantages of flow chemistry, such as increasing the rate of mass and heat transfer, increasing safety, performance, etc., the production of medicines using the flow approach has been highly regarded by large pharmaceutical companies in recent years. In this research, the production of clopidogrel was done using a continuous flow approach and different... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    Experimental investigation and process intensification of barium sulfate nanoparticles synthesis via a new double coaxial spinning disks reactor

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 115 , 2017 , Pages 11-22 ; 02552701 (ISSN) Bagheri Farahani, H ; Shahrokhi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, a new double spinning disks reactor (DSDR) has been proposed and tested successfully for the synthesis of barium sulfate nanoparticles by means of the reactive precipitation. The proposed DSDR consists of two coaxial rotating disks placed horizontally in a cylindrical chamber. Continuous precipitation of barium sulfate nanoparticles as a chemical test system was carried out using this new contacting device and the effects of operating and design parameters such as the disk rotational speed, distance between the disks, feed concentration, feed flow rate, free ion ratio, feed location, and feed distribution pattern on the mean size, size distribution, and morphology of the... 

    Three-dimensional numerical simulation of a novel electroosmotic micromixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 25-33 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Abdorahimzadeh, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Lab-on-a-chip (LOC) systems have been widely used in chemical and medical analyses. In this study, a novel T-shaped electroosmotic micromixer was simulated and the effects of different parameters on the mixing process were examined. These parameters include; inlet angle, number of conducting hurdles, arrangements of the hurdles, geometry of hurdles and chambers, aspect ratios of the channel cross-sectional profile, hurdle radius, and depth. It was found that the inlet angle has a direct influence on mixing index (σ). The effect of various number of hurdles (one, two, three and four hurdles) and their orientations was investigated. Simulations revealed that using two conducting hurdles is the... 

    Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection

    , Article Analytica Chimica Acta ; Volume 1022 , 2018 , Pages 96-105 ; 00032670 (ISSN) Vatankhah, P ; Shamloo, A ; Sharif University of Technology
    Abstract
    Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is... 

    A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators

    , Article Chemical Engineering Science ; Volume 195 , 2019 , Pages 120-126 ; 00092509 (ISSN) Rismanian, M ; Saidi, M. S ; Kashaninejad, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Microfluidic-based concentration gradient generators (CGGs) have a number of applications in chemical, biological and pharmaceutical studies. Thus, precise design of the microfluidic system is crucial to maintaining the desired concentration gradient in microchannels. One of the design considerations is the length of microchannels in the structure of a CGG. A CGG with a short length fails to provide the complete diffusive mixing, while the size of the microchip would unfavorably increase by incorporating a long CGG. Considering a CGG as a tree-like structure consisting of T-shaped micromixers, the mixing process of the species at a straight microchannel has been solved analytically. Herein,... 

    Multiphysics analysis and practical implementation of a soft μ-actuator- based microfluidic micromixer

    , Article Journal of Microelectromechanical Systems ; Volume 29, Issue 2 , 2020 , Pages 268-276 Annabestani, M ; Azizmohseni, S ; Esmaeili Dokht, P ; Bagheri, N ; Aghassizadeh, A ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Electroactive-Polymers (EAPs) are one of the best soft $mu $ -actuators with great biomedical applications. Ionic ones (i-EAPs) have more promising features and have adequate potential for using in the active microfluidic devices. Here, as a case study, we have designed and fabricated a microfluidic micromixer using an i-EAP named Ionic Polymer-Metal Composite (IPMC). In microfluidics, active devices have more functionality but due to their required facilities are less effective for Point of Care Tests (POCTs). In the direction of solving this paradox, we should use some active components that they need minimum facilities. IPMC can be one of these components, hence by integrating the IPMC... 

    Numerical investigation on the effect of external varying magnetic field on the mixing of ferrofluid with deionized water inside a microchannel for lab-on-chip systems

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Saadat, M ; Ghassemi, M ; Shafii, M. B ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Energy-efficient mixing is vital for chemical and fuel processes. To this end, a flow-focusing configuration is proposed to investigate the effect of a uniform magnetic field on the mixing of a water-based ferrofluid with two streams of deionized water. An external and varying magnetic field is imposed on a straight microchannel, and the mixing between the ferrofluid and deionized waters is qualitatively and quantitatively measured. A commercial code based on the finite-element method is used, and the simulations are validated by two experimental studies in the literature. For a magnetic flux density of 10 mT, a signal frequency of 1 Hz, a duty cycle of 0.3, an inlet velocity of 500 µm/s,... 

    Computational study of an integrated microfluidic device for active separation of RBCs and cell lysis

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 174 , 2022 ; 02552701 (ISSN) Jalilvand, E ; Shamloo, A ; Gangaraj, M. H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Separation and lysis of RBCs play an important role in diagnosis of different diseases. Although they have been partially studied in several researches, a comprehensive study on integrating both separation and lysis units on a single chip has been seen rarely in the literature. Also, the factors related to the chemical lysis process have not been investigated in detail. In this study, we introduce a novel microfluidic channel design for sequential RBC's separation and lysis. For the separation part, an active method with an electric field was applied to the cells. Besides, a novel mixer was designed for mixing the cell solution and lysis reagent. In the lysis section, we used a mathematical... 

    A new scheme for improving the mixing efficiency in micro scale

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 183-191 ; 9780791844632 (ISBN) Anbari, A. M ; Haroutunian, A ; Saidi, M. S ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    Generally speaking, most micro-fluidic mixing systems are limited to the low Reynolds number regime in which diffusion dominates convection, and consequently the mixing process tends to be slow and it takes a relatively long time to have two fluids completely mixed. Therefore, rapid mixing is essential in micro-fluidic systems. In order to hasten the mixing process in micro scale, in this study we come up with a novel scheme for a two dimensional micro-fluidic mixer which encompasses three pairs of electrodes, one pair embedded in the mixing chamber and two pairs located in the micro-channels before and after the mixing chamber. The width of the middle pair is assumed to be twice of the... 

    A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology

    , Article Microfluidics and Nanofluidics ; Volume 19, Issue 6 , 2015 , Pages 1297-1308 ; 16134982 (ISSN) Ahmadian Yazdi, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Both nonlinear rheology and finite EDL thickness effects on the mixing process in an electroosmotically actuated Y-sensor are being investigated in this paper, utilizing a depthwise averaging method based on the Taylor dispersion theory. The fluid rheological behavior is assumed to obey the power-law viscosity model. Analytical solutions are obtained assuming a large channel width to depth ratio for which a 1-D profile can efficiently describe the velocity distribution. Full numerical simulations are also performed to determine the applicability range of the analytical model, revealing that it is able to provide accurate results for channel aspect ratios of ten and higher and quite... 

    Electrokinetic mixing at high zeta potentials: Ionic size effects on cross stream diffusion

    , Article Journal of Colloid and Interface Science ; Volume 442 , 2015 , Pages 8-14 ; 00219797 (ISSN) Ahmadian Yazdi, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Academic Press Inc  2015
    Abstract
    The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives... 

    Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

    , Article Sensors and Actuators, B: Chemical ; Volume 283 , 2019 , Pages 831-841 ; 09254005 (ISSN) Naghdloo, A ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing... 

    Synthesis and polymorph controlling of calcite and aragonite calcium carbonate nanoparticles in a confined impinging-jets reactor

    , Article Chemical Engineering and Processing - Process Intensification ; 2020 Adavi, K ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this article, a confined-impinging-jets reactor (CIJR) was designed and tested successfully for the synthesis of calcium carbonate nanoparticles using the reactive precipitation method. The proposed CIJR comprised of two opposed nozzles placed in a cylindrical chamber. Effects of various operating and design parameters such as supersaturation, feed flow rate, nozzle diameter, reactor diameter, operating temperature, and surface-active agents on the mean particle size, particle size distribution, and the polymorphs of calcium carbonate nanoparticles were investigated carefully. By changing the supersaturation, reactor diameter, jets velocity, operating temperature, and the nozzle diameter,... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a... 

    Numerical investigation on mixing intensification of ferrofluid and deionized water inside a microchannel using magnetic actuation generated by embedded microcoils for lab-on-chip systems

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 147 , 2020 Saadat, M ; Shafii, M. B ; Ghassemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Effective and rapid mixing is crucial for chemical and biological processes. The purpose of the current study is to investigate the effect of steady and varying magnetic field on the mixing of a water-based ferrofluid and two streams of deionized water inside a microchannel for Lab-on-Chip applications. To this end, the nonlinear governing equations, the momentum equation, the continuity equation, the mass transport equation and the Maxwell-Ampere equations are numerically solved. A commercial code based on the finite-element method is used and the numerical simulations are validated by the experimental results in the literature. To augment the mixing performance, the effects of influencing... 

    Investigation of a Novel Microfluidic Device for Label-Free Ferrohydrodynamic Cell Separation on a Rotating Disk

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 2 , 2020 , Pages 372-378 Shamloo, A ; Besanjideh, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Negative magnetophoresis is a novel and attractive method for continuous microparticle sorting inside a magnetic medium. In this method, diamagnetic particles are sorted based on their sizes using magnetic buoyancy force and without any labeling process. Although this method provides some attractive features, such as low-cost fabrication and ease of operation, there are some obstacles that adversely affect its performance, especially for biological applications. Most types of magnetic media, such as ferrofluids, are not biocompatible, and the time-consuming process of sample preparation can be threatening to the viability of the cells within the sample. Furthermore, in this method, both the...