Loading...
Search for: molds
0.011 seconds

    Removal of Pharmaceuticals from Polluted Water Using Carbon Nanotube-based Membranes Coated with Enzyme

    , M.Sc. Thesis Sharif University of Technology Masjoudi, Mahsa (Author) ; Borghei, Mehdi (Supervisor) ; Ghobadi Nejad, Zahra (Co-Supervisor)
    Abstract
    Today, presence of micropollutants, including pharmaceutical compounds, in aquatic systems has turned into a major environmental challenge threatening the health of humans and many aquatic and terrestrial organisms. In the recent years, biodegradation of pharmaceuticals using enzymes, such as laccase, has been presented as a green method for eliminating these types of pollutants. Furthermore, regarding the improved stability and reusability of immobilized enzymes, these types of biocatalysts are suitable for industrial applications. Enzymatic membrane reactor is a promising method of enzymatic treatment and fabrication of a high-efficiency enzymatic membrane is a major step to begin this... 

    Modeling and Simulation of Vacuum Assisted Resin Transfer Molding Process with Flexible Tooling

    , M.Sc. Thesis Sharif University of Technology Ghorban Nia Hassankiadeh, Arash (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Resin Transfer Molding (RTM) which is one of the categories of Liquid Composite Molding (LCM) process, is considered as one of the most important process in polymer composite manufacturing. To improve this manufacturing method and reaching higher qualities, numerous modified methods has been developed. One of these modified methods is Vaccum Assisted Resin Trasnfer Molding with Flexible Tooling which is considerably applicable in manufacturing parts with high quality, large and complex geometry. Although, this manufacturing method has variety of advantages, there are some problems such as void formation making production difficult and dependent to experimental trial and error. So numerical... 

    Construction of Three-dimensional Graphene Foam Plates and Experimental Study of Nanocomposite Tensile Strength of Graphene Foam/Epoxy

    , M.Sc. Thesis Sharif University of Technology Khosravani, Sajedeh (Author) ; Adib Nazari, Saeed (Supervisor)
    Abstract
    In this study composite is built based on epoxy which is reinforced with 3D graphen foam using the RTM (resin transfer molding) method in which the molding is done by hand, through injecting epoxy to graphen foam.Good scattering and neat meshing of 3d graphen planes in composite have resulted in its improved mechanical quilities.The subject of the present study is the synthesis of graphen foam from graphen oxide and making graphen foam/epoxy composite in order to improve its mechanical properties. In order to do that, firstly graphen foam is forged from graphen oxide in a 3d mesh, in a way that single graphen planes in polymer matrixes are eliminated.Having very little density, very high... 

    Fabrication and Study of Mechanical Behavior of in Situ Microfibrillar- Reinforced Composites of Polypropylene/Recycled Poly (Ethylene Terephthalate)Toughened with Rubber Particles

    , M.Sc. Thesis Sharif University of Technology Motahari, Tayebeh (Author) ; Bagheri, Reza (Supervisor) ; Alizadeh, Reza (Supervisor)
    Abstract
    The use of polymers is increasing day by day due to low density, reasonable price and ability to produce different products. On the other hand, the accumulation of polymer wastes in nature is one of the environmental concerns in today's world, which is mainly due to the widespread use of polymers in the packaging industry and disposable applications. In order to solve this problem, recycling is recommended as the most appropriate and economical solution. Because in addition to consuming polymer waste, it also saves energy and reduces carbon footprint.Polyethylene terephthalate (PET) is one of the polymeric materials which; It has a special place in the packaging industry and is widely used... 

    The Evaluation of Different Parameters on Fatigue Life of Carbon / Epoxy and Carbon / Phenolic Polymer Composite Rods under Tensile-pressure Loads

    , M.Sc. Thesis Sharif University of Technology Rastegar, Sajad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    The aim of this dissertation is to analyze the tensile-stress fatigue of composite rods made of a combination of carbon-epoxy resin as well as carbon chopped-phenolic resin and to investigate the effect of different parameters on their fatigue life. The curing process is completely different in carbon / epoxy and carbon / phenolic composites, Carbon / Epoxy is a thermo-plastic composite, but carbon / phenolic is a thermo- set composite. Therefore, differences in the curing process, raw materials, changes in the volume percentage of resin and fibers, the effects of different loading during the production and curing process of the composite, cooling and heating rates during production can... 

    Studying Immobilization of Laccase by Entrapment and Its Applications in Micropollutants Removal from Aqueous Wastewater

    , M.Sc. Thesis Sharif University of Technology Toutounchi, Arvin (Author) ; Yaghmaei, Soheila (Supervisor) ; Ghabodinejad, Zahra (Co-Supervisor)
    Abstract
    One of the major environmental problems in recent years is the presence of micropollutants that cause many problems for the environment and living organisms. The micropollutant bisphenol A and the drug diclofenac are one of the pollutants and endocrine disruptors. Usually, conventional biological and physico-chemical methods do not have a high ability to remove such pollutants. Also, advanced oxidation methods usually lead to the production of highly toxic products. Using enzymes is an attractive method to remove these micropollutants. Laccase enzyme is one of the most famous enzymes in the field of biotherapy because it can remove a wider range of pollutants and it is one of the... 

    Immobilization of Laccase Using Metal-Organic Framework and its Application in Micropollutant Removal

    , M.Sc. Thesis Sharif University of Technology Ghassemi, Raman (Author) ; Yaghmaei, Soheila (Supervisor) ; Ghobadinejad, Zahra (Supervisor)
    Abstract
    Nowadays, micropollutants present in aquatic environments posses a significant threat to the well-being and health of human beings. Various physicochemical and advanced approaches have been proposed to confront these hazards. In recent years, biological treatment methods have gained great interest for their green approach. One of these biological treatment options is the treatment of polluted waters by enzymes. Enzymatic treatment of micropollutants can be achieved by oxidoreductase enzymes. One of the most important and widely used oxidoreductase enzymes employed for water treatment is Laccase. However, enzyme immobilization is employed to counter the drawbacks of using enzymes, such as... 

    Synthesis of One-Dimensional Nanoneedle-Like Arrays Hydroxyapatite for Bone Tissue Engineering Applications

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh Chinijani, Turan (Author) ; Nemati, Ali (Supervisor) ; Khachatourian, Adrine Malek (Supervisor) ; Shokri, Babak (Co-Supervisor)
    Abstract
    Implant primary stability is a crucial component of implant survival. Primary mechanical stability is correlated with implant type, surgical technique, quantity and quality of bone at the recipient site. Since bone integration (BI) significance has been acknowledged, a variety of techniques have been developed to quicken BI and achieve faster fixation. Studies have shown that material type, and many surface properties, including as surface composition, roughness, topography, and energy, have a significant influence during the early stages of bone integration to the implant. In this work, we did synthesis one-dimensional nanoneedle-like arrays of hydroxyapatite using the injection method... 

    Using 3d Printed Molds for Constructing Topology Optimized Concrete Dams

    , M.Sc. Thesis Sharif University of Technology Khatami, Alireza (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    In this research, a new method is proposed for constructing concrete structures with complex geometry, including topology-optimized concrete dams on a small scale. According to global statistics, concrete is the most consumed material in the world after water, and its production process causes a lot of damage to the environment. One of the best ways to reduce concrete consumption is to use tools such as topology optimization to design concrete structures. Nevertheless, few research has been done in the field of topology optimization of concrete dams, one of the important reasons for which is the difficulty of building physical model to perform physical tests, validating numerical models, and... 

    The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al-7%Si-Mg alloy castings

    , Article Materials Science and Engineering A ; Volume 579 , 2013 , Pages 64-70 ; 09215093 (ISSN) Eisaabadi B., G ; Davami, P ; Kim, S. K ; Tiryakioglu, M ; Sharif University of Technology
    2013
    Abstract
    The effects of melt quality and the placement of a filter in the filling system on Weibull distributions of tensile strength and elongation of Al-7%Si-Mg alloy castings were investigated. Three different combinations of melt quality and filtering were used: (a) unstirred, with filter in the filling system, (b) stirred to produce and entrain surface oxide films with no filter in the filling system to emulate poor initial melt preparation and melt handling, and (c) stirred and with a filter placed in the filling system. The results showed that the highest elongation and tensile strength values were obtained from the unstirred, filtered condition and lowest values were from stirred and... 

    Effect of casting and mould parameters on surface decarburisation in lost wax casting of DIN CK 45 steel

    , Article International Journal of Cast Metals Research ; Volume 24, Issue 6 , 2011 , Pages 327-332 ; 13640461 (ISSN) Montakhab, M ; Behjati, P ; Sharif University of Technology
    Abstract
    The effect of mould preheating temperature, casting modulus and graphite addition method on surface decarburisation during lost wax casting of CK 45 steel has been investigated. For this purpose, a novel image analysis program was developed to determine the carbon concentration profile. It was observed that on increasing the preheating temperature and casting modulus, the depth of decarburisation increases significantly. This behaviour was related to the decreased cooling rate of the samples which enhances the loss of carbon by reaction with the surrounding atmosphere. It was also found that the distribution of graphite in different layers of the mould and the distance of these layers from... 

    Sintering viscosity and sintering stress of nanostructured WC-Co parts prepared by powder injection moulding

    , Article Powder Metallurgy ; Volume 54, Issue 1 , Nov , 2011 , Pages 84-88 ; 00325899 (ISSN) Simchi, A ; Sharif University of Technology
    2011
    Abstract
    The uniaxial viscosity and sintering stress of WC-10Co-0·9VC (wt-%) were obtained by a loading dilatometer as functions of fractional density (0·64<ρ<0·93) and temperature (1084

    Sintering of nanostructured WC-10Co/316L stainless-steel composite parts made by assembling of the PIM parts

    , Article World Powder Metallurgy Congress and Exhibition, World PM 2010, Florence, 10 October 2010 through 14 October 2010 ; Volume 4 , 2010 ; 9781899072194 (ISBN) Simchi, A ; Petzoldt, F ; Hartwig, T ; Veltl, G ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2010
    Abstract
    This paper reports co-sintering response of nanostructured WC-Co/316L stainless steel composite produced by assembling of powder injection molding (PIM) parts. A significant mismatch sintering shrinkage (>4%) was observed in the temperature range of 1080-1350 °C. The reaction between WC and Fe at the contact area resulted in the diffusion of C and Co into the iron lattice and eventually formation of a low-temperature liquid phase that in fact affects the shape control of the PIM parts during sintering. In order to make the co-sintering feasible, a special sintering cycle was developed. The reaction between the cemented carbide and stainless steel was also retarded by developing a special... 

    Understanding the occurrence of the surface turbulence in a nonpressurized bottom gating system: numerical simulation of the melt flow pattern

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 232, Issue 3 , March , 2018 , Pages 230-241 ; 14644207 (ISSN) Kheirabi, A ; Baghani, A ; Bahmani, A ; Tamizifar, M ; Davami, P ; Ostad Shabani, M ; Mazahery, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Surface turbulence during the filling of the mold triggers the entrainment of oxide films, which appears to be detrimental to the soundness of the final casting. Nonpressurized and bottom-gating systems have been employed in order to avoid such casting defects by reducing the surface velocity of the liquid metal. However, recent studies have shown that the melt front velocity in the mold entrance may exceed the critical value in the nonpressurized and bottom-gating systems. Therefore, a study was conducted on numerical simulation melt flow pattern in nonpressurized and bottom-gating systems. It was noted that the liquid metal enters the gate and then mold cavity with a higher velocity by... 

    A rapid prototyping-based methodology for patient-specific contouring of osteotomy plates

    , Article Rapid Prototyping Journal ; Volume 25, Issue 5 , 2019 , Pages 888-894 ; 13552546 (ISSN) Gomari, B ; Farahmand, F ; Farkhondeh, H ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: An important challenge of the osteotomy procedures, particularly in the case of large and complex corrections, is the fixation of the osteotomy site. The purpose of this study is to propose a practical and cost-effect methodology for the plate adapting problem of osteotomy surgery. Design/methodology/approach: A novel patient-specific plate contouring methodology, based on rapid prototyping (RP) and multi-point forming (MPF) techniques, was developed and evaluated. In this methodology, a female mold is fabricated by RP, based on the geometry of the osteotomy site and estimation of the plate spring back. The mold is then used to configure a MPF die, which is then used for press... 

    Sintering of zirconia/430l stainless steel bilayers for co-powder injection moulding

    , Article European International Powder Metallurgy Congress and Exhibition, Euro PM 2008, Mannheim, 29 September 2008 through 1 October 2008 ; Volume 2 , January , 2008 , Pages 299-303 ; 9781899072033 (ISBN) Dourandish, M ; Simchi, A ; Hartwig, T ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2008
    Abstract
    To fabricate ceramic/metal complex-shaped part by co-powder injection moulding process (2KPIM), it is essential to tailor the sintering parameters in order to gain a low mismatch shrinkage, i.e. high sintering compatibility. In the present work, nanocrystalline 3Y-TZP and commercial 430L MIM grade stainless steel powders were co-sintered at various sintering cycles. Isothermal and non-isothermal sintering behavior of the individual and composite layers in argon and vacuum atmospheres were examined. High resolution scanning electron microscopy (HRSEM) coupled with energy dispersive X-ray (EDX) analysis was used to study the bonding interface between the ceramic and metal joints. It is shown... 

    Fabrication of porosity-graded biocompatible structures by 3D printing of Co-Cr-Mo alloy

    , Article European Powder Metallurgy Congress and Exhibition, Euro PM 2007, Toulouse, 15 October 2007 through 17 October 2007 ; Volume 3 , 2007 , Pages 255-260 ; 9781899072293 (ISBN) Dourandish, M ; Simchi, A ; Godlinski, D ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2007
    Abstract
    Manufacturing of complex-shaped bimetals utilizing two-color powder injection molding (2C-PIM) and three-dimensional printing (3DP) processes, which basically involve sintering of a powder/binder mixture, has been attracted a great interest. This article addresses sintering of biocompatible Co-Cr-Mo alloy for manufacturing stepwise porosity-graded composite structures. Such composite structures provide strength at the core and a porous layer for the tissue growth. To evaluate the process, two grades of gas atomized Co-Cr-Mo powder with an average particle size of 19 and 63 μm were used. Isothermal and nonisothermal sintering behavior of the loose powders under hydrogen and argon atmospheres... 

    Numerical simulation of liquid/gas phase flow during mold filling

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 196, Issue 1-3 , 2006 , Pages 697-713 ; 00457825 (ISSN) Tavakoli, R ; Babaei, R ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    A numerical model for simulation of liquid/gas phase flow during mold filling is presented. The incompressible Navier-Stokes equations are discretized on a fixed Cartesian mesh with finite difference method. The fractional-step scheme is employed for enforcing incompressibility constraint. The free surface effects are calculated using the volume of fluid method based on the piecewise-linear interface reconstruction and split Lagrangian advection of volume fraction field. Adding limited compressibility to the gas phase led to improvement in convergence rate of Poisson equation solver (about 2-fold). This new concept permits simulation of two-phase incompressible free surface flow during mold... 

    Advanced steel powder for direct metal laser sintering

    , Article European Powder Metallurgy Congress and Exhibition, Euro PM 2005, Prague, 2 October 2005 through 5 October 2005 ; Volume 3 , 2005 , Pages 35-40 ; 9781899072187 (ISBN) Petzoldt, F ; Pohl, H ; Simchi, A ; Alcantara, B ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2005
    Abstract
    Recent advances in material issues for Direct Metal Laser Sintering (DMLS) process are presented. The concept is to decrease the powder particle size with the aim of enhancing the sintering kinetics and improving the surface quality of the produced parts. The outcome is particularly suitable for overcoming existing limitations with the rapid tooling, e.g. manufacturing of mould inserts for injection moulding and die casting, by the DMLS process. The powder composition was adapted near to the conventional P/M steels in order to get identical properties with a favourable price. Such novel powder material provides an opportunity to considerably reduce the product development time for P/M... 

    A numerical analysis of thermal conductivity, thermal dispersion, and structural effects in the injection part of the resin transfer molding process

    , Article Journal of Porous Media ; Volume 13, Issue 4 , 2010 , Pages 375-385 ; 1091028X (ISSN) Layeghi, M ; Karimi, M ; Seyf, H. R ; Sharif University of Technology
    2010
    Abstract
    Thermal conductivity, thermal dispersion, and structural effects in resin transfer molding (RTM) process are studied numerically. The injection part of the RTM process is modeled as a transport of resin flow through a fibrous porous medium in a long rectangular channel. The fluid flow is modeled using the Darcy-Brinkman-Forchheimer model and the heat transfer process using the energy equation based on local thermal equilibrium assumption. Both isotropic and anisotropic heat transfer in porous media are investigated. The governing equations are solved numerically for the isotropic heat transfer case and analytically for the anisotropic case. The numerical results are fitted to the available...