Loading...
Search for: molecules
0.014 seconds
Total 276 records

    N-Type conductive small molecule assisted 23.5% efficient inverted perovskite solar cells

    , Article Advanced Energy Materials ; Volume 12, Issue 34 , 2022 ; 16146832 (ISSN) Cao, Q ; Li, Y ; Zhang, Y ; Zhao, J ; Wang, T ; Yang, B ; Pu, X ; Yang, J ; Chen, H ; Chen, X ; Li, X ; Ghasemi, S ; Salari, H ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in... 

    Structural and theoretical exploring of noncovalent interactions in Chlorido- and Nitrito-rhenium(I) tricarbonyl complexes bearing 2,3-Butadiene-bis(2-nitrobenzylidene)hydrazine Ligand: Intramolecular Re–κ1-endo-ONO(lone pair)…π*(C[tbnd]O) interaction

    , Article Inorganica Chimica Acta ; Volume 540 , 2022 ; 00201693 (ISSN) Kia, R ; Heshmatnia, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herein, we report the synthesis, characterization and combined structural and full computational analysis of noncovalent interactions in a new hydrazine ligand and its two chlorido- and endo-nitrito-rhenium(I) tricarbonyl complexes. The analysis of crystal structures has been accompanied by comprehensive computational studies of the noncovalent interactions utilizing the quantum theory of atoms in molecules (QTAIM), natural bond orbitals (NBO), independent gradient model (IGM), and electron localization function (ELF) to shed light on the nature of the interactions. On the other hand, comprehensive energy decomposition analysis (EDA) by extended transition state coupled with natural orbitals... 

    Effects of molecular structure on thermal, rheological and mechanical properties of drip irrigation PE tapes

    , Article Journal of Polymer Research ; Volume 29, Issue 10 , 2022 ; 10229760 (ISSN) Haghparast, S ; Pircheraghi, G ; Houshmandmoayed, S ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Considering the microstructure-processing-properties relationship, the attempt was made to distinguish the main structural features of drip irrigation tape grades. In this regards, two different commercial polyethylene grades using for irrigation tape application (DB and MD samples) with various microstructural features were fully characterized by means of thermal, rheological and mechanical measurements and microscopic observations. A set of DSC techniques revealed that DB sample has faster crystallization kinetic probably due to its high crystallizable segments in chains and broad molecular weight distribution. It was found, the type of co-monomer used in DB sample is 1-hexene and in MD... 

    Friction reduction in grafted carbon nanochannels by applying an electric field

    , Article Computational Materials Science ; Volume 213 , 2022 ; 09270256 (ISSN) Saleki, O ; Moosavi, A ; Hannani, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Water can be pumped in nanochannels by limiting it between the surfaces with different hydrophobicities and exerting a spinning electric field. The asymmetrical hydrophobicity combined with the spinning electric field and the fact that the water molecules have a dipole moment create a situation in which the angular momentum of water molecules is transformed into a linear momentum and the water is pumped into the nanochannel. The hydrophobicity of the surfaces can be manipulated by using nanostructures to reduce friction. In this study, two types of nanostructures have been used which are hierarchical nanostructures and polymer nanostructures made of Poly(N-isopropylacrylamide). The walls of... 

    Chromogenic detection of xylene isomers and luminogenic chemosensing of o-xylene employing a new macrocyclic cobalt complex: synthesis, and X-ray crystallographic, spectroscopic and computational studies

    , Article New Journal of Chemistry ; Volume 46, Issue 43 , 2022 , Pages 20745-20754 ; 11440546 (ISSN) Ghanbari, B ; Asadi Mofarrah, L ; Jamjah, A ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Here, we report the synthesis and characterization of a binuclear Co(ii) complex (Co2(2py)2Cl4) with two dinaphtho-diazacrown ether macrocyclic ligands, bearing two pyridine arms as a colourimetric and fluorescent sensor for detecting different xylene isomers as well as acting as a catalyst for the oxidation of o- and m-xylene under vacuum at room temperature. Chromogenic detection occurred when Co2(2py)2Cl4 was exposed to the xylene isomers, wherein the original blue colour of the complex changed to green and green-blue in the presence of o- and m-xylene, respectively. Meanwhile, no colour change was observed in the presence of the p-xylene isomer. Fluorescence spectroscopy revealed that... 

    Self-Powered humidity sensors based on sns2nanosheets

    , Article ACS Applied Nano Materials ; Volume 5, Issue 11 , 2022 , Pages 17123-17132 ; 25740970 (ISSN) Shooshtari, L ; Rafiefard, N ; Barzegar, M ; Fardindoost, S ; Irajizad, A ; Mohammadpour, R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    With the advent of the Internet of Things (IoT), the development of self-powered sensors has received much attention. Introducing triboelectric nanogenerators (TENGs) as a power source that converts mechanical movement into electrical signals has been admired recently. Moreover, the monitoring of humidity has become enormously essential in several technological contexts from environment monitoring to biomedical applications, thus joining these two subjects provides a huge benefit in achieving self-powered humidity sensors. Here, in this research, facile, low-priced and self-powered humidity sensors are fabricated utilizing transition-metal dichalcogenides (TMD) nanosheets. Semi-vertical SnS2... 

    Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Rabiee, N ; Ghadiri, A. M ; Alinezhad, V ; Sedaghat, A ; Ahmadi, S ; Fatahi, Y ; Makvandi, P ; Saeb, M. R ; Bagherzadeh, M ; Asadnia, M ; Varma, R. S ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing... 

    Insight into the corrosion inhibition of Biebersteinia multifida root extract for carbon steel in acidic medium

    , Article Science of the Total Environment ; Volume 836 , 2022 ; 00489697 (ISSN) Khayatkashani, M ; Soltani, N ; Tavakkoli, N ; Nejatian, A ; Ebrahimian, J ; Mahdi, M. A ; Salavati Niasari, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this project, the protective effect of Biebersteinia multifida root extract (BMRE) against corrosion of 1018 low carbon steel (1018LCS) in HCl solutions was appraised by assessing weight loss, electrochemical impedance spectroscopy (EIS), and polarization at 25 °C. The maximum inhibitory efficacy for the concentration of 1 g/l of the BMRE was 92.8% at 25 °C after 2 h and increased to 95.3% after 24 h of immersion. Polarization experiments have shown that the extract in acidic solutions can act as a mixed corrosion inhibitor. The corrosion inhibitory efficacy of BMRE decreased with increasing temperature, and at all temperature settings studied, the adsorption of BMRE molecules on 1018 LCS... 

    Enhanced singlet oxygen production under nanoconfinement using silica nanocomposites towards improving the photooxygenation’s conversion

    , Article Journal of Nanoparticle Research ; Volume 24, Issue 9 , 2022 ; 13880764 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this contribution, the effect of physical immobilization of methylene blue (MB) into silica nanocomposites was investigated on the conversion and selectivity of the photooxygenation of anthracene and dihydroartemisinic acid (DHAA). Physically immobilized photocatalysts were synthesized through a developed Stöber method and were thoroughly characterized by UV–Vis, FTIR, XRD, XPS, SEM, TEM, HR-TEM, BET-BJH, and EDX analyses. Based on the TEM and UV–Vis results, it was determined that enhancement of the MB concentration as an organocatalyst for the Stöber reaction led to an increase in the size of the nanoparticles from 54 to 183 nm and a 21 nm blue shift in their UV–Vis spectra. Moreover,... 

    Unraveling cancer metastatic cascade using microfluidics-based technologies

    , Article Biophysical Reviews ; Volume 14, Issue 2 , 2022 , Pages 517-543 ; 18672450 (ISSN) Hakim, M ; Kermanshah, L ; Abouali, H ; Hashemi, H. M ; Yari, A ; Khorasheh, F ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the... 

    Electronic polarization effects on membrane translocation of anti-cancer drugs

    , Article Physical Chemistry Chemical Physics ; Volume 24, Issue 20 , 2022 , Pages 12281-12292 ; 14639076 (ISSN) Najla Hosseini, A ; Lund, M ; Ejtehadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Free-energy calculations are crucial for investigating biomolecular interactions. However, in theoretical studies, the neglect of electronic polarization can reduce predictive capabilities, specifically for free-energy calculations. To effectively mimick polarization, we explore a Charge Switching (CS) model, aiming to narrow the gap between computational and experimental results. The model requires quantum-level partial charge calculations of the molecule in different environments, combined with atomistic MD simulations. Studying three different anti-cancer drug molecules with three different phospholipid membranes, we show that the method significantly improves agreement with available... 

    Computational insight into networking H-bonds in open and cyclic forms of galactose

    , Article Journal of Molecular Structure ; Volume 1255 , 2022 ; 00222860 (ISSN) Kotena, Z. M ; Fattahi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this work, the intramolecular H-bonds in galactose were studied using DFT at the B3LYP/6–311++G (d,p) levels of theory, atoms in molecules (AIM), and natural bond orbital (NBO). AIM and NBO analysis revealed a cooperative network of trifurcated, bifurcated, and normal H-bonds for the conjugate bases of open galactse (O-Gal). While for the conjugate base of the cyclic form of galactose, we identified bifurcated and normal H-bonds, which may highlight a crucial feature of the biological activity of a whole class of natural sugars. The O-H…O bonds are categorized as mostly electrostatic, strong H-bonds and more favorable, whereas for multiple interactions involving C=O…H, C-H…O and C-H…H-C... 

    Detection of molecular vibrations of atrazine by accumulation of silver nanoparticles on flexible glass fiber as a surface-enhanced Raman plasmonic nanosensor

    , Article Optical Materials ; Volume 128 , 2022 ; 09253467 (ISSN) Eskandari, V ; Kordzadeh, A ; Zeinalizad, L ; Sahbafar, H ; Aghanouri, H ; Hadi, A ; Ghaderi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Surface-Enhanced Raman Spectroscopy (SERS) is a sensitive vibration spectroscopy method applied to analyze a variety of analytes, including toxins and pesticides. The SERS method is an accurate method for detecting significantly low concentrations of biomaterials and chemicals. In the present study, in order to detect atrazine pesticide, the glass fiber substrates coated with silver nanoparticles have been used as SERS plasmonic nanosensors. First, silver nanoparticles were prepared by applying a chemical approach named the Tollens' method, and the SERS plasmonic substrates (SPS) were fabricated by depositing the colloidal silver solution on a glass fiber substrate. The SERS plasmonic... 

    A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation

    , Article Chemosphere ; Volume 297 , 2022 ; 00456535 (ISSN) Ajalli, N ; Alizadeh, M ; Hasanzadeh, A ; Khataee, A ; Azamat, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The potential of carbon-based nanosheet membranes with functionalized pores is great as water treatment membranes. Using the molecular dynamic simulation technique, the dimethyl sulfoxide (DMSO) separation from the water/DMSO binary solution is investigated, and the functionalized graphene nanosheets are used as a membrane. This membrane was functionalized by –F (fluorine) and –H (hydrogen) functional groups. For the separation of DMSO, external hydrostatic pressures up to 100 MPa were applied to the considered systems. The separation mechanism was based on molecular size. Multiple analyses were done to study the capability of considered membranes for the separation of DMSO molecules from... 

    Electro-optical properties of APS and APhS linkers on silicon thin film: A DFT study

    , Article Applied Surface Science ; Volume 605 , 2022 ; 01694332 (ISSN) Assareh Pour, F ; Darvish, G ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    APS (3-Aminopropyl) trimethoxysilane) and APhS (p-Aminophenyl) trimethoxysilane) are the most commonly used linkers on a silicon surface. We investigate the surface properties of the structures, including APS or APhS on a silicon substrate. The studied structures consist of APS or APhS linkers with one, two, or three bonds with a substrate, which is a thin layer of Si with crystal orientation 〈1 0 0〉 or 〈1 1 1〉. Using a first-principles study based on density functional theory (DFT), we investigated the electronic and optical properties of the silicon-linker interface, such as interface states, orbital location, dielectric function, and photon absorption. The effects of linker type, number... 

    4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells

    , Article Optical Materials ; Volume 123 , 2022 ; 09253467 (ISSN) Rafiei Rad, R ; Azizollah Ganji, B ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Perovskite solar cells fabrication process need inert or low humidity atmospheres. While highly efficient perovskite solar cells to overcome the photovoltaic marketing should be achieved stability at any environmental conditions. At high humidity, water molecules react with the perovskite layer and increase the degradation rate, leading to a drastic decrease in device performance and perovskite crystallinity. In this work, the effect of environmental humidity on photophysical parameters of wide bandgap, (WBG) perovskite layer and solar cells stability is systematically investigated and tBP is proposed as an additive in perovskite precursor to increase the moisture resistance and improve the... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 3 , 2022 , Pages 1579-1588 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides

    , Article Journal of Colloid and Interface Science ; Volume 606 , 2022 , Pages 2038-2050 ; 00219797 (ISSN) Ashkarran, A. A ; Hosseini, A ; Loloee, R ; Perry, G ; Lee, K. B ; Lund, M ; Ejtehadi, M. R ; Mahmoudi, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    We report on charge transport across self-assembled monolayers (SAMs) of short tau peptides by probing the electron tunneling rates and quantum mechanical simulation. We measured the electron tunneling rates across SAMs of carboxyl-terminated linker molecules (C6H12O2S) and short cis-tau (CT) and trans-tau (TT) peptides, supported on template-stripped gold (AuTS) bottom electrode, with Eutectic Gallium-Indium (EGaIn)(EGaIn) top electrode. Measurements of the current density across thousands of AuTS/linker/tau//Ga2O3/EGaIn single-molecule junctions show that the tunneling current across CT peptide is one order of magnitude lower than that of TT peptide. Quantum mechanical simulation... 

    Azahomofullerenes as new n-type acceptor materials for efficient and stable inverted planar perovskite solar cells

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 17 , 2021 , Pages 20296-20304 ; 19448244 (ISSN) Chavan, R. D ; Prochowicz, D ; Bończak, B ; Fiałkowski, M ; Tavakoli, M. M ; Yadav, P ; Patel, M. J ; Gupta, S. K ; Gajjar, P. N ; Hong, C. K ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Fullerene derivatives with a strong electron-accepting ability play a crucial role in enhancing both the performance and stability of perovskite solar cells (PSCs). However, most of the used fullerene molecules are based on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which limits the device performance due to difficulties in preparing high-quality and uniform thin films. Herein, solution-processable azahomofullerene (AHF) derivatives (abbreviated as AHF-1 and AHF-2) are reported as novel and effective electron-transport layers (ETLs) in p-i-n planar PSCs. Compared to the control PCBM ETL-based PSCs, the devices based on AHFs exhibit higher photovoltaic performances, which is... 

    Influences of polymer-surfactant interaction on the drop formation process: an experimental study

    , Article Langmuir ; Volume 37, Issue 3 , 2021 , Pages 1025-1036 ; 07437463 (ISSN) Dastyar, P ; Salehi, M. S ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The interaction between polymer and surfactant molecules affects the physical properties of liquids, which could be of great importance in an abundance of processes related to drop formation. Polymer and surfactant concentration is a factor that dramatically impacts the shape of molecular networks formed in the fluid bulk and the characteristics of a forming drop. In this study, the deformation and detachment of aqueous carboxymethyl cellulose (CMC) solutions' drops containing different concentrations of sodium dodecyl sulfate (SDS) are studied experimentally. Our purpose is to determine the effects of CMC and SDS concentrations on the parameters related to the formation process, including...