Loading...
Search for: moving-boundaries
0.006 seconds
Total 23 records

    Modeling of moving boundaries in large plasticity deformations via an enriched arbitrary Lagrangian-Eulerian FE method

    , Article Scientia Iranica ; Volume 17, Issue 2 A , 2010 , Pages 141-160 ; 10263098 (ISSN) Anahid, M ; Khoei, A. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, a new computational technique is presented for the modeling of moving boundaries in large plastic deformations based on an enriched arbitrary Lagrangian-Eulerian finite element method. An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to capture the advantages of both Lagrangian and Eulerian methods and alleviate the drawbacks of mesh distortion in Lagrangian formulation. An enriched finite element method is implemented based on the extended FEM technique to capture the arbitrary interfaces independent of element boundaries. The process is accomplished by performing a splitting operator to separate the material (Lagrangian) phase from the convective (Eulerian)... 

    A new semi-analytical modeling of steam-assisted gravity drainage in heavy oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 69, Issue 3-4 , 2009 , Pages 261-270 ; 09204105 (ISSN) Alali, N ; Pishvaie, M. R ; Jabbari, H ; Sharif University of Technology
    Abstract
    Thermal recovery by steam injection has proven to be an effective means of recovering heavy oil. Forecasts of reservoir response to the application of steam are necessary before starting a steam drive project. Thermal numerical models are available to provide forecasts. However, these models are expensive and consume a great deal of computer time. An alternative to numerical modeling is to use a semi-analytical model. The objective of the current study was to investigate thermal applications of horizontal wells for displacement and gravity drainage processes using analytical modeling as well as reservoir simulation. The main novelties presented in the paper are: a) the transient temperature... 

    A moving-mesh finite-volume method to solve free-surface seepage problem in arbitrary geometries

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 31, Issue 14 , 2007 , Pages 1609-1629 ; 03639061 (ISSN) Darbandi, M ; Torabi, S. O ; Saadat, M ; Daghighi, Y ; Jarrahbashi, D ; Sharif University of Technology
    2007
    Abstract
    The main objective of this work is to develop a novel moving-mesh finite-volume method capable of solving the seepage problem in domains with arbitrary geometries. One major difficulty in analysing the seepage problem is the position of phreatic boundary which is unknown at the beginning of solution. In the current algorithm, we first choose an arbitrary solution domain with a hypothetical phreatic boundary and distribute the finite volumes therein. Then, we derive the conservative statement on a curvilinear co-ordinate system for each cell and implement the known boundary conditions all over the solution domain. Defining a consistency factor, the inconsistency between the hypothesis...