Loading...
Search for: multi-scale-modeling
0.007 seconds
Total 30 records

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy... 

    A concurrent multi-scale technique in modeling heterogeneous FCC nano-crystalline structures

    , Article Mechanics of Materials ; Volume 83 , April , 2015 , Pages 40-65 ; 01676636 (ISSN) Khoei, A. R ; Jahanbakhshi, F ; Aramoon, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, a multi-scale molecular dynamics-finite element coupling is presented to study the mechanical behavior of heterogeneous nano-crystalline structures. The stiffness and mass matrices of the continuum sub-domain are generated by applying a linear transformation on the matrices obtained via the atomic structure underlying the FE mesh. A Lagrange multiplier method is employed to the transition zone imposing velocity resemblance of the coupling regions. The constraint equations of motion are solved by the multi-time-step decomposition thus giving the opportunity to ascribe different time steps to each individual zone. The molecular dynamics is performed by employing the... 

    Validity of cauchy-born hypothesis in multi-scale modeling of plastic deformations

    , Article International Journal of Solids and Structures ; 2017 ; 00207683 (ISSN) Khoei, A. R ; Jahanshahi, M ; Toloui, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The Cauchy-Born (CB) hypothesis has been widely used in multi-scale modeling of crystalline nano-structures. The violation of CB hypothesis in stress space and the transition to plasticity, which is equivalent to the violation of CB hypothesis in strain space, are generally confused and it becomes crucial to differentiate between the two distinct phenomena; the violation of the former usually occurs at high values of stress and at regions where the surface effects are manifest while the violation of the latter occurs at low stresses when the material loses its strength to tolerate the applied loading. In this paper, a novel technique is developed to investigate the validity of CB hypothesis... 

    Validity of cauchy–born hypothesis in multi-scale modeling of plastic deformations

    , Article International Journal of Solids and Structures ; Volume 115-116 , 2017 , Pages 224-247 ; 00207683 (ISSN) Khoei, A. R ; Jahanshahi, M ; Toloui, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The Cauchy–Born (CB) hypothesis has been widely used in multi-scale modeling of crystalline nano-structures. The violation of CB hypothesis in stress space and the transition to plasticity, which is equivalent to the violation of CB hypothesis in strain space, are generally confused and it becomes crucial to differentiate between the two distinct phenomena; the violation of the former usually occurs at high values of stress and at regions where the surface effects are manifest while the violation of the latter occurs at low stresses when the material loses its strength to tolerate the applied loading. In this paper, a novel technique is developed to investigate the validity of CB hypothesis... 

    Multi-scale modeling of plastic deformations in nano-scale materials; transition to plastic limit

    , Article International Journal for Numerical Methods in Engineering ; Volume 109, Issue 8 , 2017 , Pages 1180-1216 ; 00295981 (ISSN) Khoei, A. R ; Jahanshahi, M ; Sharif University of Technology
    Abstract
    A large amount of research in computational mechanics has biased toward atomistic simulations. This trend, on one hand, is due to the increased demand to perform computations in nanoscale and, on the other hand, is due to the rather simple applications of pairwise potentials in modeling the interactions between atoms of a given crystal. The Cauchy–Born (CB) hypothesis has been used effectively to model the behavior of crystals under different loading conditions, in which the comparison with molecular dynamics simulations presents desirable coincidence between the results. A number of research works have been devoted to the validity of CB hypothesis and its application in post-elastic limit.... 

    Fully coupled hydromechanical multiscale model with microdynamic effects

    , Article International Journal for Numerical Methods in Engineering ; Volume 115, Issue 3 , 2018 , Pages 293-327 ; 00295981 (ISSN) Khoei, A. R ; Hajiabadi, M. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this paper, a multiscale finite element framework is developed based on the first-order homogenization method for fully coupled saturated porous media using an extension of the Hill-Mandel theory in the presence of microdynamic effects. The multiscale method is employed for the consolidation problem of a 2-dimensional saturated soil medium generated from the periodic arrangement of circular particles embedded in a square matrix, which is compared with the direct numerical simulation method. The effects of various issues, including the boundary conditions, size effects, particle arrangements, and the integral domain constraints for the microscale boundary value problem, are numerically... 

    A progressive multi-scale fatigue model for life prediction of laminated composites

    , Article Journal of Composite Materials ; Volume 51, Issue 20 , 2017 , Pages 2949-2960 ; 00219983 (ISSN) Hosseini Kordkheili, S.A ; Toozandehjani, H ; Soltani, Z ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    This article presents a multi-scale progressive micro-mechanical fatigue model. The model employs fundamental equation of the kinetic theory of fracture to calculate damage parameters of both fiber and matrix during cyclic loading. In order to adapt the equation, required material coefficients of the constituents can be achieved from fatigue test results of longitudinal and transverse unidirectional composites, only. Sharing stress capacities of fiber and matrix are determined using a modified progressive micro-mechanical bridging model in the presence of damage. The damage parameters in the constituents are calculated employing two different equivalent scalars. However, during sinusoidal... 

    Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure

    , Article Journal of Biomechanics ; Volume 42, Issue 10 , 2009 , Pages 1560-1565 ; 00219290 (ISSN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone... 

    Modeling the interphase layer between CNT and matrix in nanocomposites using nonlinear large deformation hierarchical multiscale

    , Article 4th International Conference on Multiscale Materials Modeling, MMM 2008, 27 October 2008 through 31 October 2008 ; 2008 , Pages 239-242 ; 9780615247816 (ISBN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    Department of Scientific Computing, Florida State University  2008
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of carbon nanotube reinforced nanocomposites. This scheme consists of definition of two boundary value problems, one for macroscale (the scale in which the material exists homogeneously and we are interested in modeling the material behavior on that scale), and another for microscale (the scale in which the material becomes heterogeneous and microstructural constituents emerge). The coupling between these scales is done by using homogenization techniques. Using the presented scheme, we have studied carbon nanotube (CNT) reinforced composites behavior and the effects of an interphase layer between CNT and matrix material.... 

    Stability and size-dependency of cauchy-born hypothesis in three-dimensional applications

    , Article International Journal of Solids and Structures ; Volume 46, Issue 9 , 2009 , Pages 1925-1936 ; 00207683 (ISSN) Aghaei, A ; Abdolhosseini Qomi, M. J ; Kazemi, M. T ; Khoei, A. R ; Sharif University of Technology
    2009
    Abstract
    The Cauchy-Born hypothesis (CB) provides a hierarchical approach in the molecular theory of crystal elasticity to relate the continuum and atomic deformations. This kinematic theory has been extensively used as the constitutive law of continuum regions in multi-scale models. In these models, the fine scale is proposed to describe the real behavior of crystalline structure wherever the continuum description fails. The main objective of this article is to investigate the stability and size-dependency of CB hypothesis in three-dimensional applications by direct comparison of information between atomistic and continuous description of a medium. The Sutton-Chen many-body potential is used for the...