Loading...
Search for: multi-wall-carbon-nanotubes
0.005 seconds
Total 55 records

    Synthesis and application of silica aerogel-MWCNT nanocomposites for adsorption of organic pollutants

    , Article Scientia Iranica ; Volume 17, Issue 2 F , 2010 , Pages 122-132 ; 10263098 (ISSN) Bargozin, H ; Amirkhani, L ; Moghaddas, J. S ; Ahadian, M. M ; Sharif University of Technology
    Abstract
    Silica aerogel-multi wall carbon nanotube composites were synthesized successfully with a waterglass precursor and an ambient pressure drying method. Pure silica aerogels are so fragile that they cannot be used easily. Carbon nanotubes (MWCNT) were used as reinforcements to strengthen the mechanical properties of pure silica aerogels. Results show that inserting small amounts of MWCNT causes silica aerogels to monolith. By addition of MWCNT, monolith nanocomposites were produced with 800 m2/g surface area and a 140° contact angle. Results show that the silica aerogels and reinforced composites have an excellent adsorption property for the removal of organic pollutants from water. The average... 

    Encapsulation of palladium nanoparticles by multiwall carbon nanotubes-graft-poly(citric acid) hybrid materials

    , Article Journal of Applied Polymer Science ; Volume 116, Issue 4 , 2010 , Pages 2188-2196 ; 00218995 (ISSN) Adeli, M ; Mehdipour, E ; Bavadi, M ; Sharif University of Technology
    2010
    Abstract
    Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNTCOOH) and MWCNT-graft-poly(citric acid) (MWCNTg-PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT-g-PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT-g-PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT-g-PCA hybrid materials (MWCNT-g-PCA-EPN) and their application as nanocatalyst toward... 

    Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition

    , Article Journal of Power Sources ; Volume 188, Issue 2 , 2009 , Pages 404-410 ; 03787753 (ISSN) Reyhani, A ; Mortazavi, S.Z ; Moshfegh, A.Z ; Golikand, A.N ; Amiri, M ; Sharif University of Technology
    2009
    Abstract
    Hydrogen storage capacities of raw, oxidized, purified and Fe-doped multi-walled carbon nanotubes (MWCNTs) were studied by electrochemical method. Based on transmission electron microscopy and Raman spectroscopic data, thermal oxidation removed defective graphite shells at the outer walls of MWCNTs. The analysis results indicated that the acid treatment dissolved most of the catalysts and opened some tips of the MWCNTs. Thermal gravimetric analysis and differential scanning calorimetry results illustrated that by oxidation and purification of MWCNTs, the weight loss peak shifts toward a higher temperature. N2 adsorption isotherms of the purified and oxidized MWCNTs showed an increase in N2... 

    Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation

    , Article Carbon ; Volume 47, Issue 14 , 2009 , Pages 3280-3287 ; 00086223 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2009
    Abstract
    TiO2/multi-wall carbon nanotube (MWNT) heterojunction arrays were synthesized and immobilized on Si(0 0 1) substrate as photocatalysts for inactivation of Escherichia coli bacteria. The vertically aligned MWNT arrays were grown on ∼5 nm Ni thin film deposited on the Si by using plasma enhanced chemical vapor deposition at 650 °C. Then, the MWNTs were coated by TiO2 using dip-coating sol-gel method. Post annealing of the TiO2/MWNTs at 400 °C resulted in crystallization of the TiO2 coating and formation of Ti-C and Ti-O-C carbonaceous bonds at the heterojunction. The visible light-induced photoinactivation of the bacteria increased from MWNTs to TiO2 to TiO2/MWNTs, in which the bacteria could... 

    Heat transfer in turbulent nanofluids: separation flow studies and development of novel correlations

    , Article Advanced Powder Technology ; Volume 31, Issue 8 , August , 2020 , Pages 3120-3133 Montazer, E ; Shafii, M. B ; Salami, E ; Muhamad, M. R ; Yarmand, H ; Gharehkhani, S ; Chowdhury, Z. Z ; Kazi, S. N ; Badarudin, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Convective heat transfer plays a significant role in numerous industrial cooling and heating applications. This method of heat transfer can be passively improved by reconfiguring flow passage, fluid thermophysical properties, or boundary conditions. The broader scope of nanotechnology introduced several studies of thermal engineering and heat transfer. Nano-fluids are one of such technology which can be thought of engineered colloidal fluids with nano-sized particles. In the present study, turbulent forced convection heat transfer to nanofluids in an axisymmetric abrupt expansion heat exchanger was investigated experimentally. During heat transfer investigation, the functionalized... 

    Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications

    , Article Soft Matter ; Volume 18, Issue 36 , 2022 , Pages 6800-6811 ; 1744683X (ISSN) Sadati, V ; Khakbiz, M ; Chagami, M ; Bagheri, R ; Chashmi, F. S ; Akbari, B ; Shakibania, S ; Lee, K. B ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume... 

    DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode

    , Article Analytica Chimica Acta ; Vol. 836, issue , July , 2014 , p. 34-44 ; ISSN: 00032670 Fayazfar, H ; Afshar, A ; Dolati, M ; Dolati, A ; Sharif University of Technology
    Abstract
    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination

    , Article Electrochimica Acta ; Volume 57, Issue 1 , 2011 , Pages 132-138 ; 00134686 (ISSN) Shahrokhian, S ; Saberi, R. S ; Sharif University of Technology
    Abstract
    A composite film constructed of surfactant doped over-oxidized polypyrrole and multi-walled carbon nanotube was prepared on the surface of glassy carbon electrode by the electro-polymerization method. Surface characterization of the modified electrode was performed by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectrometry. The investigations have been proved that the over-oxidation of the modifier film resulted in a porous thin layer that improves the interlayer diffusion mechanism for the electroactive species. On the other hand, the negative charge density on the surface of the electrode excludes the negative analytes (e.g. ascorbate and Fe(CN)63?/4?)... 

    Electrodeposition of Pt-Ru nanoparticles on multi-walled carbon nanotubes: Application in sensitive voltammetric determination of methyldopa

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 125-133 ; 00134686 (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    2011
    Abstract
    A modified glassy carbon electrode, prepared by potentiostatic electrodeposition of platinum-ruthenium nanoparticles (Pt-RuNPs) onto a multi-walled carbon nanotube (MWCNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric responses toward methyldopa (m-dopa) compared to glassy carbon electrodes individually coated with MWCNT or Pt-RuNPs. The surface morphology and nature of the hybrid film (Pt-RuNPs/MWCNT) deposited on glassy carbon electrodes was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. A remarkable enhancement in the microscopic area of the electrode together... 

    Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media

    , Article Journal of Separation Science ; Volume 33, Issue 8 , 2010 , Pages 1132-1138 ; 16159306 (ISSN) Bagheri, H ; Khalilian, F ; Naderi, M ; Babanezhad, E ; Sharif University of Technology
    Abstract
    A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline-ortho-phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic... 

    Nanocapsules based on carbon nanotubes-graft-polyglycerol hybrid materials

    , Article Nanotechnology ; Volume 20, Issue 48 , 2009 ; 09574484 (ISSN) Adeli, M ; Mirab, N ; Zabihi, F ; Sharif University of Technology
    2009
    Abstract
    In this work the effect of a conjugated macromolecule on the conformation of CNT was studied. Typically polyglycerol (PG) was covalently grafted onto the surface of multi-wall carbon nanotubes (MWCNTs) and MWCNT-graft-PG (MWCNT- g-PG) hybrid materials were obtained. Dynamic light scattering (DLS) experiments showed an average diameter around 100nm for MWCNT- g-PG hybrid materials in water. The difference between this size and the expected size for MWCNT- g-PG hybrid materials (the length of pristine MWCNTs was several micrometers) was assigned to the effect of the grafted PG on the conformation of MWCNT in the solution state. Transmission electron microscopy (TEM) evaluations showed a change... 

    Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron

    , Article Journal of Electroanalytical Chemistry ; Volume 636, Issue 1-2 , 2009 , Pages 40-46 ; 15726657 (ISSN) Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier  2009
    Abstract
    There are high attractions in the development of conducting polymer (CP) coatings to improve the electrochemical properties and biocompatibility of electrodes in the area of biosensors. A new type of the modified electrodes is prepared in a layer-by-layer process by using multi-walled carbon nanotube (MWCNT) and poly-pyrrole. In this procedure, the glassy carbon electrode is casted by a drop suspension of MWCNT, which leads to form a thin film of nanotube on its surface. In the second step, electrochemical polymerization of pyrrole in the presence of tiron (used as doping anion) is performed on the surface of the MWCNT pre-coated electrode. The modification procedure led to fabrication of a... 

    Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles

    , Article Talanta ; Volume 80, Issue 1 , 2009 , Pages 31-38 ; 00399140 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotube decorated with silver nanoparticles (AgNPs-MWCNT) is used as an effective strategy for modification of the surface of pyrolytic graphite electrode (PGE). This modification procedure improved colloidal dispersion of the decorated MWCNTs in water, affording uniform and stable thin films for altering the surface properties of the working electrode. Robust electrode for sensing applications is obtained in a simple solvent evaporation process. The electrochemical behavior of sumatriptan (Sum) at the bare PGE and AgNPs-MWCNT modified PGE is investigated. The results indicate that the AgNPs-MWCNT modified PGE significantly enhanced the oxidation peak current of Sum. A... 

    Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine

    , Article Biosensors and Bioelectronics ; Volume 24, Issue 11 , 2009 , Pages 3235-3241 ; 09565663 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Adeli, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) were immobilised with cobalt nanoparticles and analyzed by transmission electron microscopy. This modification procedure substantially improved colloidal dispersion of the immobilised MWCNTs in water and organic solvents, yielding uniform and stable thin films for modification of the glassy carbon electrode surface. The modified electrode showed an efficient catalytic role for the electrochemical oxidation of thioridazine (TR), leading to remarkable decrease in its oxidation overpotential of approximately 100 mV and enhancement of the kinetics of the electrode reaction, which can be confirmed by increasing in the peak current and sharpness of the peak....