Loading...
Search for: multiphase
0.012 seconds
Total 112 records

    Impact of thermodynamic non-idealities and mass transfer on multi-phase hydrodynamics

    , Article Scientia Iranica ; Volume 17, Issue 1 C , JANUARY-JUNE , 2010 , Pages 55-64 ; 10263098 (ISSN) Irani, M ; Pishvaie, M. R ; Sharif University of Technology
    2010
    Abstract
    Considering the non-ideal behavior of fluids and their effects on hydrodynamic and mass transfer in multiphase. flow is very essential. Simulations were performed that take into account the effects of mass transfer and mixture non-ideality on the hydrodynamics reported by Bozorgmehry et al In this paper, by assuming the density of phases to be. constant and using Raoult's law instead of EOS and the fugacity coefficient definition, respectively, for both liquid and gas phases, the importance of nonideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T = 323 K and P = 445 kPa) also indicated that the assumption of constant density... 

    A Study on the effects of thermodynamic nonideality and mass transfer on multi-phase hydrodynamics using CFD methods

    , Article World Academy of Science, Engineering and Technology ; Volume 58 , 2009 , Pages 627-632 ; 2010376X (ISSN) Irani, M ; Bozorgmehry Boozarjomehry, R ; Pishvaie, M. R ; Tavasoli, A ; Sharif University of Technology
    2009
    Abstract
    Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt's law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had... 

    A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilising experimental design methodology

    , Article Chemical Engineering Science ; Volume 66, Issue 20 , October , 2011 , Pages 4798-4806 ; 00092509 (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    The water-gas shift reaction occurs competitively to the main reaction of the Ir-catalysed methanol carbonylation process. To study the effect of seven factors including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations on the formation of hydrogen and carbon dioxide as a result of the water-gas shift reaction and other side reactions in the carbonylation of methanol to acetic acid, the experimental design method combined with response surface methodology (RSM) was utilised. Central composite design at five levels (with α=1.63) was used to design experiments. A quadratic model that included the main and interaction effects of variables for H 2... 

    Assessment of a central difference finite volume scheme for modeling of cavitating flows using preconditioned multiphase Euler equations

    , Article Journal of Hydrodynamics ; Volume 23, Issue 3 , 2011 , Pages 302-313 ; 10016058 (ISSN) Hejranfar, K ; Fattah Hesary, K ; Sharif University of Technology
    Abstract
    A numerical treatment for the prediction of cavitating flows is presented and assessed. The algorithm uses the preconditioned multiphase Euler equations with appropriate mass transfer terms. A central difference finite volume scheme with suitable dissipation terms to account for density jumps across the cavity interface is shown to yield an effective method for solving the multiphase Euler equations. The Euler equations are utilized herein for the cavitation modeling, because some certain characteristics of cavitating flows can be obtained using the solution of this system of equations with relative low computational effort. In addition, the Euler equations are appropriate for the assessment... 

    Exergy analysis of Airlift Systems: Experimental approach

    , Article International Journal of Exergy ; Volume 8, Issue 4 , 2011 , Pages 407-424 ; 17428297 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Airlift Systems (ALS) are widely used in various industrial applications. As the main part of the flow through ALS's upriser pipe, is formed by gas-liquid flow, the analysis of such systems will be accompanied by problems of two-phase flow modelling. Several effective variables are involved in ALS; thereupon comprehensive method is needed to consider these parameters. Exergy analysis can be considered as a simple solution for the realisation of the preferred domain of ALS's operation. Here, this method has been proposed to examine the performance of ALS. Based on thermodynamic principles, an analytical model has been implemented in each phase and the respective experimental data have been... 

    A high-order nodal discontinuous Galerkin method to solve preconditioned multiphase Euler/Navier-Stokes equations for inviscid/viscous cavitating flows

    , Article International Journal for Numerical Methods in Fluids ; Volume 92, Issue 5 , 2020 , Pages 478-508 Hajihassanpour, M ; Hejranfar, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this study, a high-order accurate numerical method is applied and examined for the simulation of the inviscid/viscous cavitating flows by solving the preconditioned multiphase Euler/Navier-Stokes equations on triangle elements. The formulation used here is based on the homogeneous equilibrium model considering the continuity and momentum equations together with the transport equation for the vapor phase with applying appropriate mass transfer terms for calculating the evaporation/condensation of the liquid/vapor phase. The spatial derivative terms in the resulting system of equations are discretized by the nodal discontinuous Galerkin method (NDGM) and an implicit dual-time stepping... 

    Adaptive neuro-fuzzy algorithm applied to predict and control multi-phase flow rates through wellhead chokes

    , Article Flow Measurement and Instrumentation ; Volume 76 , 2020 Ghorbani, H ; Wood, D. A ; Mohamadian, N ; Rashidi, S ; Davoodi, S ; Soleimanian, A ; Kiani Shahvand, A ; Mehrad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A Takagi-Sugeno adaptive neuro-fuzzy inference system (TSFIS) model is developed and applied to a dataset of wellhead flow-test data for the Resalat oil field located offshore southern Iran, the objective is to assist in the prediction and control of multi-phase flow rates of oil and gas through the wellhead chokes. For this purpose, 182 test data points (Appendix 1) related to the Resalat field are evaluated. In order to predict production flow rate (QL) expressed as stock-tank barrels per day (STB/D), this dataset includes four selected input variables: upstream pressure (Pwh); wellhead choke sizes (D64); gas to liquid ratio (GLR); and, base solids and water including some water-soluble... 

    A novel two-parameter relative permeability model

    , Article Journal of Porous Media ; Volume 15, Issue 11 , 2012 , Pages 1061-1066 ; 1091028X (ISSN) Ghoodjani, E ; Bolouri, S. H ; Sharif University of Technology
    B. House  2012
    Abstract
    The relative permeability curves are key factors for assessment of reservoir performance by numerical simulators. The widely used one-parameter models are not sufficiently flexible for fitting laboratory measured relative permeability data. These models only show a concave upward trend and cannot represent the S-shape behavior of relative permeability. The other three-parameter models are too complex to use in practical reservoir engineering calculations. In this paper, a novel two-parameter model is proposed that maintains the simplicity of previous models while having great flexibility over a full range of saturation. The two parameters L and U control the shape of the lower and upper part... 

    Improvement of airlift pump performance based on the exergy analysis

    , Article Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, 14 June 2010 through 17 June 2010, Lausanne ; Volume 1 , 2010 , Pages 489-497 ; 9781456303006 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Gholampour, P ; Shams, H ; Saidi, M. H ; Sharif University of Technology
    Aabo Akademi University  2010
    Abstract
    Airlift systems (ALS) are widely used in various fields such as petroleum and oil extracting industries. As gas-liquid two phase flow is the main part of the flow through these systems, the analysis of such systems accompanies with problems of two phase flow modeling. However, exergy analysis could be a simple method for modeling of airlift systems. In the present study, an analytical model based on thermodynamic principles has been implemented on each phase to analyze the performance of airlift systems. The experimental data were collected at a large scale multiphase flow test rig for the airlift pump with 6m height and diameter of 50 mm. Finally, irreversibility terms, energy destruction,... 

    Relative permeabilities hysteresis for oil/water, gas/water and gas/oil systems in mixed-wet rocks

    , Article Journal of Petroleum Science and Engineering ; Volume 161 , February , 2018 , Pages 559-581 ; 09204105 (ISSN) Fatemi, S. M ; Sohrabi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Accurate determination of relative permeability (kr) curves and their hysteresis is needed for reliable prediction of the performance of oil and gas reservoirs. A few options (e.g., Carlson, Killough and Jargon models) are available in commercial reservoir simulators to account for hysteresis in kr curves under two-phase flow. Two-phase kr curves are also needed for estimating kr hysteresis under three-phase flow during water-alternating-gas (WAG) injection. Although, most oil reservoirs are mixed-wet, the existing hysteresis predictive approaches have been developed based on water-wet conditions. Experimentally measured data are needed to assess the performance of these methodologies under... 

    A finite-volume ELLAM for non-linear flux convection-diffusion problems

    , Article International Journal of Non-Linear Mechanics ; Volume 44, Issue 2 , 2009 , Pages 129-136 ; 00207462 (ISSN) Fatehi, R ; Taghizadeh Manzari, M ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    In this paper, a modified finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) extended for convection-diffusion problems with a non-linear flux function is introduced. Tracking schemes are discussed using viscous Burgers' equation. It is shown that in order to have smooth results, only the new time level values should be used in tracking process. Then, the proposed method is employed to study immiscible incompressible two-phase flows in porous media. Various one- and two-dimensional test cases involving internal sources and sinks are solved and accuracy of solution and performance of the method are investigated by comparing the results obtained using FVELLAM with those of... 

    Unstructured coarse grid generation for reservoir flow simulation using background grid approach

    , Article 16th Middle East Oil and Gas Show and Conference 2009, MEOS 2009, Manama, 15 March 2009 through 18 March 2009 ; Volume 2 , 2009 , Pages 685-697 ; 9781615670123 (ISBN) Evazi Yadecuri, M ; Mahani, H ; Sharif University of Technology
    2009
    Abstract
    Reservoir flow simulation involves subdivision of the physical domain into a number of gridblocks. This is best accomplished with optimized grid point density and minimized number of gridblocks especially for coarse grid generation from a fine grid geological model. In any coarse grid generation, proper distribution of grid points, which form basis of numerical gridblocks, is a challenging task. We show that this can be effectively achieved by generating a background grid that stores grid point spacing parameter. Spacing (X) can be described by Poisson's equation (∇2 L = G) where the local density of grid points is controlled by a variable source term (G). This source term can be based on... 

    Formation of liquid bridges between porous matrix blocks

    , Article AIChE Journal ; Volume 57, Issue 2 , 2011 , Pages 286-298 ; 00011541 (ISSN) Dejam, M ; Hassanzadeh, H ; Sharif University of Technology
    2011
    Abstract
    It is widely accepted that, in fluid flow and transport in fractured porous media, there exists some degree of block-to-block interaction that may lead to capillary continuity. The formation of liquid bridges causing interaction between blocks will affect oil recovery from naturally fractured reservoirs. However, the accurate modeling of the growth and detachment of liquid bridges that may cause capillary continuity between matrix blocks remains a controversial topic. In an attempt to improve our understanding of the problem, a mechanistic model is developed in this work for the formation of liquid bridges between porous blocks. The proposed model considers growth and detachment of pendant... 

    Numerical simulation of orifice cavitating flows using two-fluid and three-fluid cavitation models

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 58, Issue 6 , Sep , 2010 , Pages 505-526 ; 10407782 (ISSN) Darbandi, M ; Sadeghi, H ; Sharif University of Technology
    2010
    Abstract
    A number of numerical simulations is carried out to study the turbulent cavitating flow through an orifice. We use two different two-fluid (consisting of two interpenetrating liquid and vapor phases) and three-fluid (consisting of three liquid, vapor, and non-condensable gas phases) cavitation models to extend our study. We use the finite-volume method to solve the multiphase flow governing equations, the SIMPLEC algorithm to link the pressure and velocity equations, and the standard k- model to treat the turbulence closure problem. We fix the outlet pressure and change the inlet pressure suitably in our simulations. The discharge coefficient values obtained by the two chosen models are... 

    Study of acoustic bubble cluster dynamics using a lattice Boltzmann model

    , Article Chinese Physics B ; Volume 24, Issue 2 , 2015 ; 16741056 (ISSN) Daemi, M ; Taeibi-Rahni, M ; Massah, H ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor. A long list of complex phenomena underlies the physics of this problem. In the past decades, the lattice Boltzmann method has emerged as a promising tool to address such complexities. In this regard, we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field. A problem as a benchmark is studied to check the consistency and applicability of the model. The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics, as well as the screening effect on an acoustic... 

    Drag reduction in a channel with microstructure grooves using the lattice Boltzmann method

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 10 , 2017 ; 00223727 (ISSN) Daeian, M. A ; Moosavi, A ; Nouri Borujerdi, A ; Taghvaei, E ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Using the Shan-Chen lattice Boltzmann multi-phase model, we investigate the effect of adding microstructured grooves to the walls of a 2D parallel-plate channel on the pressure drop in the channel. The effects of the size of the grooves on the pressure drop in the channel were considered. It was observed that the pitch of the grooves has a considerable effect on the pressure drop in the channel, and even for some values of the pitch we observe an increase in the pressure drop. As the pitch decreases, a lower pressure drop is achieved. The results also show that as the ratio of the solid-liquid contact surface to the whole surface is decreased, the pressure drop decreases. It is also observed... 

    Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation

    , Article Materials Today Chemistry ; Volume 24 , 2022 ; 24685194 (ISSN) Besanjideh, M ; Rezaeian, M ; Mahmoudi, Z ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Droplet-based microfluidics is an attractive approach for producing microgels due to its high potential to control the size and shape of the particles and precisely entrap the substances within the hydrogel matrix. However, the microfluidic generation of monodisperse microgels with desired structures is still challenging. Indeed, the rheological and interfacial properties of the immiscible fluids, as well as the adopted gelling strategy, play important roles in microfluidic methods. Herein, sodium alginate droplets with different concentrations are generated via a microfluidic device with a flow-focusing unit. Besides, a combined in situ and ex situ strategy is optimized to crosslink sodium... 

    Application of the splitting approach to solve population balance equations in chemical processes

    , Article Chemical Engineering and Technology ; Volume 32, Issue 12 , 2009 , Pages 1894-1900 ; 09307516 (ISSN) Bastani, D ; Baghaei, A ; Sarrafi, A ; Sharif University of Technology
    Abstract
    Different processes in chemical industries deal with particles and multiphase flow. In such processes, particle or bubble size distribution (PSD) influences the final product quality and also process design. On the other hand, solutions to the dominant hydrodynamic and thermo-kinetic equations ignoring these distributions will make it impossible to accurately simulate these processes. Solutions to population balance equations (PBE's) are needed to attain the PSD. One of the most common methods for the solution of a PBE is the classes method (CM). However, as this method requires a large number of classes to give a reasonable result, it needs a huge amount of calculations and time. To... 

    Prediction of downhole flow regimes in deviated horizontal wells for production log interpretation

    , Article Society of Petroleum Engineers - Trinidad and Tobago Energy Resources Conference 2010, SPE TT 2010, 27 June 2010 through 30 June 2010 ; Volume 2 , June , 2010 , Pages 525-530 ; 9781617388859 (ISBN) Bahrami, H ; Hosseinian, A ; Rasouli, V ; Siavoshi, J ; Mirabolghasemi, M ; Sinanan, B ; Bagherian, B ; Sharif University of Technology
    2010
    Abstract
    Production logging is used to evaluate wells production performance. Interpretation of production log data provides velocity profile and contribution of each zone on total production. In multi-phase flow conditions, production log interpretation can be challenging since producing fluids do not have similar densities and travel with different speed depending on fluids properties and wellbore deviation. Production log interpretation in multi-phase producing wells requires identifying downhole flow regimes and determining velocity profile for each phase. There are different flow regimes and velocity models available, which are being used in production log interpretation to determine wells flow... 

    Estimation of flow rates of individual phases in an oil-gas-water multiphase flow system using neural network approach and pressure signal analysis

    , Article Flow Measurement and Instrumentation ; Volume 66 , 2019 , Pages 28-36 ; 09555986 (ISSN) Bahrami, B ; Mohsenpour, S ; Shamshiri Noghabi, H. R ; Hemmati, N ; Tabzar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Up until now, different methods, including; flow pressure signal, ultrasonic, gamma-ray and combination of them with the neural network approach have been proposed for multiphase flow measurement. More sophisticated techniques such as ultrasonic waves and electricity, as well as high-cost procedures such as gamma waves gradually, can be replaced by simple methods. In this research, only flow parameters such as temperature, viscosity, pressure signals, standard deviation and coefficients of kurtosis and skewness are used as inputs of an artificial neural network to determine the three phase flow rates. The model is validated by the field data which were obtained from separators of two oil...