Loading...
Search for: multiphase
0.013 seconds
Total 112 records

    Alternating active-phase algorithm for multimaterial topology optimization problems: A 115-line MATLAB implementation

    , Article Structural and Multidisciplinary Optimization ; Vol. 49, issue. 4 , April , 2014 , p. 621-642 Tavakoli, R ; Mohseni, S. M ; Sharif University of Technology
    Abstract
    A new algorithm for the solution of multimaterial topology optimization problems is introduced in the present study. The presented method is based on the splitting of a multiphase topology optimization problem into a series of binary phase topology optimization sub-problems which are solved partially, in a sequential manner, using a traditional binary phase topology optimization solver; internal solver. The coupling between these incomplete solutions is ensured using an outer iteration strategy based on the block coordinate descend method. The presented algorithm provides a general framework to extend the traditional binary phase topology optimization solvers for the solution of multiphase... 

    Interfacial instabilities in sediment suspension flows

    , Article Journal of Fluid Mechanics ; Vol. 758, issue , November , 2014 , p. 312-326 Abedi, M ; Jalali, M. A ; Maleki, M ; Sharif University of Technology
    Abstract
    We report the existence of interfacial instability in the two-dimensional channel flow of a sediment suspension whose particles diffuse in the carrier fluid due to shear-induced collisions. We derive partial differential equations that govern the deformations of the interface between the sediment suspension and the clear fluid, and devise a perturbation method that preserves the positivity of the particle volume fraction. We solve perturbed momentum, particle transport and deforming interface equations to show that a Kelvin-Helmholtz-type unstable wave develops at the interface for wavelengths longer than a critical value. Short-wavelength oscillations of the interface are damped due to... 

    A simultaneous method for phase identification and equilibrium calculations in reactive mixtures

    , Article Chemical Engineering Research and Design ; Volume 89, Issue 10 , 2011 , Pages 1901-1908 ; 02638762 (ISSN) Avami, A ; Saboohi, Y ; Sharif University of Technology
    Abstract
    Phase identification is an important aspect of flash calculations which can affect the phase and chemical equilibria. A new simultaneous approach for reactive mixtures, based on τ-method which relies on modification equation for mole fraction summation, is introduced in this paper. In the proposed methodology, phase identification and solution of governing equations can be performed simultaneously and effectively. In addition, prior knowledge of the number of phases in advance is not required. Present methodology has been verified with the help of case studies and results are discussed in the present paper. The results indicate that the present method gives us information about presence of... 

    Assessment of a central difference finite volume scheme for modeling of cavitating flows using preconditioned multiphase Euler equations

    , Article Journal of Hydrodynamics ; Volume 23, Issue 3 , 2011 , Pages 302-313 ; 10016058 (ISSN) Hejranfar, K ; Fattah Hesary, K ; Sharif University of Technology
    Abstract
    A numerical treatment for the prediction of cavitating flows is presented and assessed. The algorithm uses the preconditioned multiphase Euler equations with appropriate mass transfer terms. A central difference finite volume scheme with suitable dissipation terms to account for density jumps across the cavity interface is shown to yield an effective method for solving the multiphase Euler equations. The Euler equations are utilized herein for the cavitation modeling, because some certain characteristics of cavitating flows can be obtained using the solution of this system of equations with relative low computational effort. In addition, the Euler equations are appropriate for the assessment... 

    Exergy analysis of Airlift Systems: Experimental approach

    , Article International Journal of Exergy ; Volume 8, Issue 4 , 2011 , Pages 407-424 ; 17428297 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Airlift Systems (ALS) are widely used in various industrial applications. As the main part of the flow through ALS's upriser pipe, is formed by gas-liquid flow, the analysis of such systems will be accompanied by problems of two-phase flow modelling. Several effective variables are involved in ALS; thereupon comprehensive method is needed to consider these parameters. Exergy analysis can be considered as a simple solution for the realisation of the preferred domain of ALS's operation. Here, this method has been proposed to examine the performance of ALS. Based on thermodynamic principles, an analytical model has been implemented in each phase and the respective experimental data have been... 

    Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams

    , Article Computers and Geotechnics ; Volume 38, Issue 2 , March , 2011 , Pages 142-166 ; 0266352X (ISSN) Khoei, A. R ; Mohammadnejad, T ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic... 

    Unsteady multiphase modeling of cavitation around NACA 0015

    , Article Journal of Marine Science and Technology ; Volume 18, Issue 5 , 2010 , Pages 689-696 ; 10232796 (ISSN) Asnaghi, A ; Jahanbakhsh, E ; Seif, M. S ; Sharif University of Technology
    Abstract
    The present study focuses on the numerical simulation of cavitation around the NACA 0015. The unsteady behaviors of cavitation which have worthwhile applications are investigated. The cavitation patterns, velocity fields and frequency of the cavitating flow around hydrofoil is obtained. For multi phase simulation, single-fluid Navier-Stokes equations, along with a volume fraction transport equation, are employed. The bubble dynamics model is utilized to simulate phase change. SIMPLE algorithm is used for velocity and pressure computations. For discretization of equations the finite-volume approach written in body fitted curvilinear coordinates, on collocated grid, is used. In this study,... 

    Effects of unsteady friction factor on gaseous cavitation model

    , Article Scientia Iranica ; Volume 17, Issue 1 B , 2010 , Pages 13-24 ; 10263098 (ISSN) Mosharaf Dehkordi, M ; Firooz Abadi, B ; Sharif University of Technology
    Abstract
    The condition known as a water-hammer problem is a transient condition that may occur as a result of worst-case loadings, such as pump failures, valve closures, etc. in pipeline systems. The pressure in the water hammer can vary in such a way that in some cases it may increase and cause destruction to the hydraulic systems. The pressure in the water hammer can also be decreased to the extent that it can fall under the saturation pressure, where cavitation appears. Therefore, the liquid is vaporized, thus, making a two-phase flow. This pressure decrease can be as dangerous as the pressure rise. As a result of the pressure drop and vaporization of the liquid, two liquid regions are separated,... 

    A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media

    , Article Meccanica ; Volume 51, Issue 3 , 2016 , Pages 517-536 ; 00256455 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Fully coupled flow-deformation analysis of deformable multiphase porous media saturated by several immiscible fluids has attracted the attention of researchers in widely different fields of engineering. This paper presents a new numerical tool to simulate the complicated process of two-phase fluid flow through deforming porous materials using a mesh-free technique, called element-free Galerkin (EFG) method. The numerical treatment of the governing partial differential equations involving the equilibrium and continuity equations of pore fluids is based on Galerkin’s weighted residual approach and employing the penalty method to introduce the essential boundary conditions into the weak forms.... 

    Application of the splitting approach to solve population balance equations in chemical processes

    , Article Chemical Engineering and Technology ; Volume 32, Issue 12 , 2009 , Pages 1894-1900 ; 09307516 (ISSN) Bastani, D ; Baghaei, A ; Sarrafi, A ; Sharif University of Technology
    Abstract
    Different processes in chemical industries deal with particles and multiphase flow. In such processes, particle or bubble size distribution (PSD) influences the final product quality and also process design. On the other hand, solutions to the dominant hydrodynamic and thermo-kinetic equations ignoring these distributions will make it impossible to accurately simulate these processes. Solutions to population balance equations (PBE's) are needed to attain the PSD. One of the most common methods for the solution of a PBE is the classes method (CM). However, as this method requires a large number of classes to give a reasonable result, it needs a huge amount of calculations and time. To... 

    Droplet-based flows in serpentine microchannels: chemical reactions and secondary flows

    , Article International Journal of Multiphase Flow ; Volume 97 , 2017 , Pages 186-196 ; 03019322 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Abstract
    Mixing is an essential operation in many microfluidic devices. Droplet-based micromixers utilize droplets for mixing enhancement. In the present study, a novel three-dimensional simulation is conducted which has the ability to capture not only the mixing process, but also the chemical reactions inside liquid droplets. This two-phase model is used for simulating the reacting flow inside a serpentine microchannel and explores the effects of droplet size and reaction rate on the production and consumption of species in droplets. It is observed that the chemical reaction in each droplet, begins from its front area. Furthermore, it is shown that the production of species does not depend on water... 

    Three-dimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using lattice boltzmann method

    , Article Journal of Molecular Liquids ; Volume 236 , 2017 , Pages 151-161 ; 01677322 (ISSN) Alizadeh, M ; Seyyedi, S. M ; Taeibi Rahni, M ; Ganji, D. D ; Sharif University of Technology
    Abstract
    A typical process in many industrial applications is rising bubble dynamic in viscous liquids like two-phase reactors. Examining the physical behavior of bubbles may improve the understanding of systems regarding design and operation. This study focused on the splitting of bubbles resulting from their impact on solid obstacles. Fragmentation of the bubbles appears in many applications such as lab on a chip in small scale or slug bubbly flow moving upward in a tube in large scales. Using a new index-function model in Lattice Boltzmann technique proposed by “He”, we simulated the deformation and motion of a bubble in different regimes, through which, we accurately captured a sharp interface...