Loading...
Search for: multiwalled-carbon-nanotubes
0.01 seconds
Total 135 records

    Dendritic multi-walled carbon nanotube with thermoresponsive shells: A good carrier for anticancer drugs

    , Article Journal of Industrial and Engineering Chemistry ; Volume 35 , 2016 , Pages 332-340 ; 1226086X (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Shirvani, T ; Doulabi, M ; Bumajdad, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry 
    Abstract
    In this research, multi-walled carbon nanotubes (MWCNTs) were modified by dendritic macromonomer. Herein, polyamidoamine with acrylamide end groups was incorporated on MWCNTs. Afterwards, poly(N-isopropylacrylamide), (PNIPAM), was grafted on polyamidoamine in a facile synthesis. Then, doxorubicin as anticancer drug was loaded on this nanocarrier. The drug release was studied at below and above the lower critical solution temperature of PNIPAM, (LCST 32 °C), 27 °C and 37 °C, respectively. At 37 °C (body temperature) the polymer shell dehydrated and the drug release increased. The profile of drug release was expressed by Higuchi's equation which indicated that the drug release mechanism was... 

    Effects of functionalization and catalyst treatments on selective behavior of multi-walled carbon nanotube-supported palladium catalysts in hydrogenation of acetylene

    , Article Research on Chemical Intermediates ; Volume 41, Issue 2 , 2015 , Pages 1023-1034 ; 09226168 (ISSN) Bazzazzadegan, H ; Kazemeini, M ; Rashidi, A. M ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Two nanocatalysts of palladium over multi-walled carbon nanotubes (MWCNT) were synthesized and their catalytic properties evaluated in selective hydrogenation of acetylene. Different procedures were applied to synthesize catalysts which resulted in two distinct average particle sizes of palladium (Pd) over the MWCNT. The resulting catalysts displayed dissimilar NH3-TPD behaviors as well as different selectivity performances at lower temperatures. While enhancement of the hydrogen transfer mechanism occurred upon the temperature increase, similar behaviors for the aforementioned materials were obtained. Furthermore, it was revealed that the catalytic performance at higher temperatures did not... 

    Reinforcing mechanisms of carbon nanotubes and high structure carbon black in natural rubber/styrene-butadiene rubber blend prepared by mechanical mixing-effect of bound rubber

    , Article Polymer International ; Volume 64, Issue 11 , July , 2015 , Pages 1627-1638 ; 09598103 (ISSN) Ahmadi, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    The reinforcing effect of high structure carbon black (HSCB) and multi-walled carbon nanotubes (MWCNTs) on natural rubber/styrene-butadiene rubber blend processed using mechanical mixing was comparatively investigated. In-depth analysis by dynamic mechanical analysis, the Eggers-Schummer model and Medalia's relationship showed that HSCB aggregates provided large internal pores leading to significant immobilized macromolecules in filled rubber. Additionally, a tubular immobilized rubber layer with a thickness of 8nm was estimated for the rubber/MWCNT system based on dynamic mechanical analysis data. The mechanical performance of the HSCB filled blend was higher than that of the MWCNT filled... 

    Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery

    , Article Journal of Applied Polymer Science ; Volume 132, Issue 3 , August , 2015 ; 00218995 (ISSN) Anaraki, N. A ; Rad, L. R ; Irani, M ; Haririan, I ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    In the present study, polylactic acid (PLA)/polyethylene glycol (PEG)/multiwalled carbon nanotube (MWCNT) electrospun nanofibrous scaffolds were prepared via electrospinning process and their applications for the anticancer drug delivery system were investigated. A response surface methodology based on Box-Behnken design (BBD) was used to evaluate the effect of key parameters of electrospinning process including solution concentration, feeding rate, tip-collector distance (TCD) and applied voltage on the morphology of PLA/PEG/MWCNT nanofibrous scaffolds. In optimum conditions (concentration of 8.15%, feeding rate of 0.2 mL/h, voltage of 18.50 kV and TCD of 13.0 cm), the minimum experimental... 

    In situ preparation and characterization of biocompatible acrylate-terminated polyurethane containing chemically modified multiwalled carbon nanotube

    , Article Polymer Composites ; 2017 ; 02728397 (ISSN) Alishiri, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Inc  2017
    Abstract
    Biodegradable acrylate-terminated polyurethane/acrylate (APUA) filled with 2-hydroxyethyl methacrylate functionalized carbon nanotube (CNT-HEMA) was prepared by in situ free radical crosslinking. CNT-HEMA enhanced crystallinity of soft domain and caused more phase separation between hard and soft domains of APUA. Tensile testing showed a considerable improvement in elastic modulus (∼160%) and tensile strength (∼30%) at 1 wt% loading. Morphological features of APUA induced by nanotubes were found to be dominant on mechanical properties of APUA/CNT-HEMA. CNT-HEMA increased water contact angle of APUA; however, wettability of APUA/CNT-HEMA maintained in acceptable range for biomedical... 

    In situ preparation and characterization of biocompatible acrylate-terminated polyurethane containing chemically modified multiwalled carbon nanotube

    , Article Polymer Composites ; Volume 39 , April , 2018 , Pages E297-E307 ; 02728397 (ISSN) Alishiri, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Biodegradable acrylate-terminated polyurethane/acrylate (APUA) filled with 2-hydroxyethyl methacrylate functionalized carbon nanotube (CNT-HEMA) was prepared by in situ free radical crosslinking. CNT-HEMA enhanced crystallinity of soft domain and caused more phase separation between hard and soft domains of APUA. Tensile testing showed a considerable improvement in elastic modulus (∼160%) and tensile strength (∼30%) at 1 wt% loading. Morphological features of APUA induced by nanotubes were found to be dominant on mechanical properties of APUA/CNT-HEMA. CNT-HEMA increased water contact angle of APUA; however, wettability of APUA/CNT-HEMA maintained in acceptable range for biomedical... 

    Investigating electrochemical behaviors of Ag@Pt core–shell nanoparticles supported upon different carbon materials acting as PEMFC’s cathodes

    , Article Chemical Engineering Transactions ; Volume 70 , 2018 , Pages 2161-2166 ; 22839216 (ISSN) Esfandiari, A ; Kazemeini, M ; Sharif University of Technology
    Italian Association of Chemical Engineering - AIDIC  2018
    Abstract
    Core-Shell structures of Ag@Pt Nanoparticles (NPs) dispersed on different carbon base supports such as Graphene Oxide (GO), Multiwall Carbon Nanotubes (MWCNT) and Carbon black (CB) Vulcan applied to the oxygen reduction reaction (ORR) in a Proton Exchange Membrane Fuel Cell (PEMFC). Electrocatalysts synthesized through the ultrasonic treatment method. The morphology of as prepared materials characterized through the High Resolution Transmission Electron Microscopy (HRTEM) and X-ray diffraction (XRD) analyses. The ORR activities and stabilities of electrocatalysts studied through electrochemical measurements of Cyclic Voltammetry (CV) and single cell tests, respectively. Results revealed all... 

    Hydrogenation of crude terephthalic acid by supported Pd and Pd-Sn catalysts on functionalized multiwall carbon nanotubes

    , Article Chemical Engineering Research and Design ; Volume 109 , 2016 , Pages 41-52 ; 02638762 (ISSN) Tourani, S ; Safekordi, A. A ; Rashidzadeh, M ; Rashidi, A. M ; Khorasheh, F ; Sharif University of Technology
    Institution of Chemical Engineers  2016
    Abstract
    Liquid phase hydro-purification of crude terephthalic acid (CTA) was performed using supported Pd and Pd-Sn catalysts on functionalized multi-wall carbon nanotubes (FMWCNT). Pd/FMWCNT catalysts were prepared by wet impregnation with Pd loadings of 0.05 to 0.6 wt.%. Pd-Sn/FMWCNT catalysts were prepared by co-impregnation (CI) and successive impregnation (SI) using 0.3 wt.% Pd loading and Sn/Pd molar ratios of 0.1 and 0.35 for the CI method and 0.05 to 0.35 for the SI method. Pd loading of 0.3 wt.% for Pd/FMWCNT was sufficient to decrease the 4-carboxybenzaldehyde (4-CBA) content of CTA from 2100 ppm to 5.5 ppm without excessive hydrogenation of terephthalic acid (TA). The commercial catalyst... 

    Experimental and theoretical study on the mechanical properties of novolac phenolic resin nanocomposites: Effects of nanoclay and multiwallwed carbon nanotube

    , Article ECCM 2012 - Composites at Venice, Italy, Proceedings of the 15th European Conference on Composite Materials, 24 June 2012 through 28 June 2012 ; 2012 ; 9788888785332 (ISBN) Jahanmard, P ; Shojaei, A ; Faghihi, M ; Sharif University of Technology
    European Conference on Composite Materials, ECCM  2012
    Abstract
    The present work focused on the characterization of mechanical properties of novolac phenolic resin (PF) filled with two types of clays, including modified and unmodified ones, and multiwalled carbon nanotube (MWCNT). It was found that the solution mixing method is able to disperse the nanoparticles within the PF resin appropriately. It was also shown that the unmodified clay (Closite Na+) has the highest influence on the mechanical properties possibly due to the good level of dispersion as well as the good interfacial interaction. Theoretical analysis based on the rubber elasticity theory showed that the nanoparticles influence the evolution of crosslinking density and network structure  

    Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    , Article Materials Science and Engineering C ; Volume 53 , 2015 , Pages 134-141 ; 09284931 (ISSN) Shahrokhian, S ; Azimzadeh, M ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of... 

    Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure

    , Article Composites Part B: Engineering ; Volume 78 , 2015 , Pages 50-64 ; 13598368 (ISSN) Faghihi, M ; Shojaei, A ; Bagheri, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Effects of molecular weight and structure of polyamide 6 (PA6) on morphology and properties of PA6/MWCNT prepared by melt mixing were investigated. Microscopic analysis showed fine dispersion of MWCNT within low viscosity PA6s due to domination of melt infiltration into MWCNT agglomerate at low viscosity matrices with linear structure. Rheological data indicated good interfacial interaction with no percolation of MWCNT up to 2 wt% loading. DSC thermograms showed nucleating role of MWCNT on crystallization of PA6s with marginal effect on crystallinity. Experimental data supported with micromechanical model showed limited improvement on mechanical properties, but it was closely consistent with... 

    Microwave-assisted sintering of Al2O3-MWCNT nanocomposites

    , Article Ceramics International ; Volume 43, Issue 8 , 2017 , Pages 6105-6109 ; 02728842 (ISSN) Ghobadi, H ; Ebadzadeh, T ; Sadeghian, Z ; Barzega Bafrooei, H ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Alumina-MWCNT composite was densified by microwave sintering. CNTs were coated with boehmite nanoparticles to enhance their distribution in composite samples. Calcination temperature of composite powder was determined by TGA analysis (5 °C/min). Samples containing 0 and 1vol%CNT were produced by cold isostatic pressing at 180 MPa. Microwave sintering (1520 °C for 45 min) was conducted under the flow of argon. Phase analysis of the calcined composite powder showed complete transformation of boehmite into gamma-alumina. The relative densities were 99.3% and 98.1% for monolithic alumina and composite, respectively. CNT addition improved the fracture toughness of alumina by ~37%. SEM images... 

    Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method

    , Article Diamond and Related Materials ; Volume 90 , 2018 , Pages 93-100 ; 09259635 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Ultrafine-grained Al-CNT (2 and 4 vol%) composites were successfully fabricated using the flake powder metallurgy and hot pressing route, and the microstructure and tribological properties of the produced composites were studied. The results showed that the coefficient of friction and the wear rate of Al decrease with the addition of the CNT reinforcement. A carbon-rich film formed on the worn surfaces during wear test, which prevented the Al oxidation and yielded the self-lubricating effect for the composites. This improvement in the wear behavior of the composites can be attributed to the simultaneous effects of the ultrafine-grained matrix and strengthening and self-lubricating properties... 

    Synthesis and characterization of supportless Ni-Pd-CNT nanocatalyst for hydrogen production via steam reforming of methane

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 3 , 2018 , Pages 1319-1336 ; 03603199 (ISSN) Chaichi, A ; Sadrnezhaad, S. K ; Malekjafarian, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Supportless Ni-Pd-0.1CNT foamy nanocatalyst with specific surface area of 611.3 m2/g was produced by electroless deposition of nickel, palladium and multiwall carbon nanotube (MWCNT) on interim polyurethane substrate. Application of temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) data into Kissinger (Redhead) kinetic model showed lessening of their activation energies due to Pd and CNT addition. Presence of foamy Ni/SiC caused 8% higher steam reforming of methane; while Ni-Pd-0.1CNT presence resulted in 22% higher methane conversion. The catalytic behavior of the samples was described by morphological and compositional studies which were carried out by... 

    Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids

    , Article International Communications in Heat and Mass Transfer ; Volume 108 , 2019 ; 07351933 (ISSN) Askari, S ; Rashidi, A ; Koolivand, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A simple chemisorption method was used to graft on the surface of MWCNTs and Graphene nanoparticles to prepare stable kerosene-based MWCNTs and Graphene nanofluids. The prepared nanofluids remained stable for more than five months and no sedimentation was observed. Regarding the effect of temperature on thermo-physical properties, it was observed that although increasing nanoparticle concentration led to an increase in the fluid viscosity, it was negligible enough at lower nanoparticle loading. Moreover, adding nanoparticles to the base fluid did not have any noticeable impact on the fluid density which was negligible even at high concentrations. The thermal conductivity improvement was... 

    Carbonaceous supports decorated with Pt–TiO2 nanoparticles using electrostatic self-assembly method as a highly visible-light active photocatalyst for CO2 photoreduction

    , Article Renewable Energy ; Volume 145 , January , 2020 , Pages 1862-1869 Larimi, A ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Supported Pt–TiO₂ photocatalysts on carbonaceous supports were synthesized by the electrostatic self-assembly method to study CO₂ photoreduction to produce CH₄. Catalytic activities of the prepared photocatalysts were correlated with the particle size and dispersion of the active metal, which in turn depended on the type of carbonaceous support used, varying in the order of multi-walled carbon nanotubes (MWCNT) > Single-walled carbon nanotubes (SWCNT) > reduced graphene oxide > activated carbon. Generally, all catalysts were highly photoresistant with less than 5% loss of activity in terms of CH₄ yield. Pt–TiO₂/multi-walled carbon nanotubes exhibited better catalytic activity compared with... 

    Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis

    , Article Energy Conversion and Management ; Volume 205 , 2020 Salari, A ; Kazemian, A ; Ma, T ; Hakkaki Fard, A ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the current research, a three-dimensional photovoltaic thermal system integrated with phase change material system with nanofluids is investigated. The working fluids involved in this study include nano-magnesium oxide, multiwall carbon nano tube and hybrid (mixture of nano-magnesium oxide and nano-multiwall carbon nano tube) nanofluids dispersed in pure water. After comparing single-phase model and mixture model, the mixture model is used in the study and fluid flow regime in the collector is assumed to be laminar, fully develop, uniform and incompressible, to model the nanofluid in the system. A parametric analysis is conducted to examine the effect of various parameters such as working... 

    Microwave absorption characteristic of a double-layer X-band absorber based on MWCNTs/La0.6Sr0.4Mn0.5Fe0.5O4 coated with PEDOT polymer

    , Article Ceramics International ; Volume 47, Issue 12 , 2021 , Pages 17736-17744 ; 02728842 (ISSN) Li, L ; Dang, X ; Boudaghi, R ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a novel double-layer microwave absorber was designed based on the MWCNTs/La0.6Sr0.4Mn0.5Fe0.5O4 (C/LSMFO) and PEDOT-coated (P@[C/LSMFO]) nanocomposites. Co-precipitation and in-situ polymerization methods were utilized to synthesize the C/LSMFO and P@[C/LSMFO] nanocomposites, respectively. XRD, FESEM, VSM, and VNA analysis were used to determine the structural, morphological, magnetic, and electromagnetic properties of the nanocomposites. Single-layer absorbers with thicknesses of 1, 1.5, and 2 mm were fabricated, and electromagnetic parameters were evaluated via VNA in the X-band frequency. Moreover, the microwave absorbing features of the double-layer absorber with various... 

    Effect of filler loading and thickness parameters on the microwave absorption characteristic of double-layered absorber based on MWCNT/BaTiO3/pitted carbonyl iron composite

    , Article Ceramics International ; Volume 47, Issue 14 , 2021 , Pages 19538-19545 ; 02728842 (ISSN) Li, Y ; Wu, X ; Chen, J ; Cao, A ; Boudaghi, R ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this work, single- and double-layer electromagnetic wave absorbers were prepared by as-prepared MWCNTs/BaTiO3/pitted carbonyl iron composites. MWCNT/BaTiO3 (MW/BTO) was prepared via sol-gel method whereas the carbonyl iron particles (CI) were corroded via pitting corrosion method. The structural, microstructural, magnetic and microwave absorption properties of the composites were evaluated via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA) methods. CST studio software was employed to simulate the microwave absorption characteristics of double-layer absorbers. Moreover, the effects of... 

    Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes

    , Article Chemosphere ; Volume 263 , 2021 ; 00456535 (ISSN) Masjoudi, M ; Golgoli, M ; Ghobadi Nejad, Z ; Sadeghzadeh, S ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac. Polyvinylidene fluoride (PVDF) membrane modified with multi-walled carbon nanotubes (MWCNTs) were synthesized as a tailor-made support for enzyme immobilization. Covalently immobilized laccase from Trametes hirsuta exhibited remarkable activity and activity recovery of 4.47 U/cm2 and 38.31%, respectively. The results also...