Loading...
Search for: nanofluidics
0.014 seconds
Total 261 records

    Recovery of drop in heat transfer rate for a rotating system by nanofluids

    , Article Journal of Molecular Liquids ; Volume 220 , 2016 , Pages 961-969 ; 01677322 (ISSN) Zeibi Shirejini, S. R ; Rashidi, S ; Abolfazli Esfahani, J ; Sharif University of Technology
    Elsevier 
    Abstract
    This paper simulates Al2O3-water nanofluid flow and forced convection around a rotating circular cylinder. The governing parameters are Reynolds number (1 ≤ Re ≤ 100), solid volume fraction of nanoparticles (0 ≤ φ ≤ 0.05) and non-dimensional rotation rate (0 ≤ α ≤ 3). The simulations are performed to study the effects of mentioned parameters on the heat transfer rate and fluid flow characteristics. The governing equations including the continuity, momentum, and energy equations are solved with a finite volume method. It is observed that the reduction of heat transfer with increase in rotation rate is in the vicinity of 6.9% and 32% for Re = 5 and 100, respectively at φ = 0.05. Furthermore,... 

    The Role of Carbon Nanotubes in Improving Thermal Stability of Polymeric Fluids: Experimental and Modeling

    , Article Industrial and Engineering Chemistry Research ; Volume 55, Issue 27 , 2016 , Pages 7514-7534 ; 08885885 (ISSN) Halali, M. A ; Ghotbi, C ; Tahmasbi, K ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    At harsh conditions of high pressure high temperature (HPHT), polymers undergo thermal degradation leading to serious loss in fluid rheological and filtration properties. Nanoparticles are the most promising additives proposed to address this challenge. The stability of nanofluids is perused from various facets including rheological and filtration properties, shale stability, and zeta potential. The presence of nanoparticles could amazingly reduce the filtration at high temperatures even by 95%, and it also had a conspicuous effect on shale stability, thermal conductivity, and zeta potential. Experimental data were fit to rheological models to determine the best models describing the... 

    Natural convection of Al2O3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon

    , Article International Journal of Thermal Sciences ; Volume 105 , 2016 , Pages 137-158 ; 12900729 (ISSN) Esfandiary, M ; Mehmandoust, B ; Karimipour, A ; Pakravan, H. A ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    Effects of inclination angle on natural convective heat transfer and fluid flow in an enclosure filled with Al2O3-water nanofluid are studied numerically. The left and right walls of enclosure are kept in hot and cold constant temperature while the other two walls are assumed to be adiabatic. Considering Brownian motion and thermophoresis effect (two important slip velocity mechanisms) the two-phase mixture model has been employed to investigate the flow and thermal behaviors of the nanofluid. The study was performed for various inclination angles of enclosure ranging from γ = 0° to γ = 60°, volume fraction from 0% to 3%, and Rayleigh numbers varying from 105 to 107. The governing equations... 

    Potential application of silica nanoparticles for wettability alteration of oil-wet calcite: A mechanistic study

    , Article Energy and Fuels ; Volume 30, Issue 5 , 2016 , Pages 3947-3961 ; 08870624 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Jamialahmadi, M ; Helalizadeh, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Oil recovery from carbonate reservoirs can be enhanced by altering the wettability from oil-wet toward water-wet state. Recently, silica nanoparticle (SNP) suspensions are considered as an attractive wettability alteration agent in enhanced oil recovery applications. However, their performance along with the underlying mechanism for wettability alteration in carbonate rocks is not well discussed. In this work, the ability of SNP suspensions, in the presence/absence of salt, to alter the wettability of oil-wet calcite substrates to a water-wet condition was investigated. In the first step, to ensure that the properties of nanofluids have not been changed during the tests, stability analysis... 

    Study of Absorption Enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 Nanoparticles in Water and Amine Solutions

    , Article Journal of Chemical and Engineering Data ; Volume 61, Issue 4 , 2016 , Pages 1378-1387 ; 00219568 (ISSN) Rahmatmand, B ; Keshavarz, P ; Ayatollahi, S ; Sharif University of Technology
    American Chemical Society 
    Abstract
    In this work, the absorption process of carbon dioxide is performed in a custom designed high pressure experimental setup in which the gas and nanofluid are in direct contact at static state in a closed vessel. The initial condition of the tests are set at 20, 30, and 40 bar and 308 K. Nanoparticles of SiO2, Al2O3, Fe3O4, and carbon nanotubes (CNTs) are dispersed in pure water to form nanofluids at concentrations of 0.02, 0.05, and 0.1 wt %. Also, CNT nanoparticle has been dispersed in methyldiethanolamine and diethanolamine aqueous solutions at the concentration of 0.02 wt %. The absorption performances of different nanofluids are compared with the base solutions and with other nanofluids... 

    Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion

    , Article Advanced Powder Technology ; Volume 27, Issue 2 , Volume 27, Issue 2 , 2016 , Pages 564-574 ; 09218831 (ISSN) Saidi, M. H ; Tamim, H ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In this study, the unsteady three dimensional nanofluid flow, heat and mass transfer in a rotating system in the presence of an externally applied uniform vertical magnetic field is investigated. This study has different applications in rotating magneto-hydrodynamic (MHD) energy generators for new space systems and also thermal conversion mechanisms for nuclear propulsion space vehicles. The important effects of Brownian motion and thermophoresis have been included in the model of nanofluid. The governing equations are non-dimensionalized using geometrical and physical flow field-dependent parameters. The velocity profiles in radial, tangential and axial directions, pressure gradient,... 

    Experimental investigation of closed loop pulsating heat pipe with nanofluids

    , Article Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009 ; Volume 1 , 2009 , Pages 675-683 ; 9780791843567 (ISBN) Jamshidi, H ; Arabnejad, S ; Behshad Shafii, M ; Saboohi, Y ; Rasoulian, R ; Sharif University of Technology
    Abstract
    In this paper, the effect of several different parameters on the thermal resistance of a Closed Loop Pulsating Heat Pipe (CLPHP) has been investigated. These parameters include the working fluid, the inclination angle, the filling ratio and the heat influx. Also, the impact of using nanofluids with different nano-particle concentrations has been analyzed. It was observed that a CLPHP can increase the heat transfer up to 11.5 times compared to an empty pipe. Optimum performance for a system with the water-silver nanofluid was achieved at conditions of 50% filling ratio and 0.9 K/W of thermal resistance, and for the water-titanium oxide system, these optimal conditions were found to be 40%... 

    Boiling heat transfer on a high temperature silver sphere in nanofluid

    , Article International Journal of Thermal Sciences ; Volume 48, Issue 12 , 2009 , Pages 2215-2220 ; 12900729 (ISSN) Lotfi, H ; Shafii, M. B ; Sharif University of Technology
    Abstract
    To investigate boiling heat transfer characteristics of nanofluids, transient quenching experiments of a high temperature silver sphere in water-based nanofluids with Ag and TiO2 nanoparticles were performed. A silver sphere with a diameter of 10 mm and an initial temperature of 700 °C was quenched in these nanofluids at a temperature of 90 °C. The results showed a considerable reduction in the quenching ability of nanofluids compared to that of pure water. The presence of nanoparticles in water caused the film boiling mode to vanish at lower temperatures depending on the mixture concentration. Calculated heat transfer rates in nanofluids were lower than those in pure water. In the quenching... 

    Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts

    , Article Journal of Thermal Analysis and Calorimetry ; 2017 , Pages 1-19 ; 13886150 (ISSN) Hosseinnezhad, R ; Akbari, O. A ; Hassanzadeh Afrouzi, H ; Biglarian, M ; Koveiti, A ; Toghraie, D ; Sharif University of Technology
    Abstract
    In the present study, the turbulent flow of water/Al2O3 nanofluid in a tubular heat exchanger with two twisted-tape inserts has been numerically investigated in the three-dimensional coordinate. This numerical simulation has been done by using FVM, and all of the equations have been discretized by second-order upwind method. For coupling velocity–pressure equations, SIMPLEC algorithm has been used. The investigated parameters of the present study are Reynolds numbers at the range of 10,000–30,000, the effect of twist ratio of twisted-tape inserts from 2.5 to 4, co-swirl flow and counter-swirl flow of two twisted-tapes inside the tube and volume fractions of nanofluid from 1 to 4%. The... 

    Determination of parabolic trough solar collector efficiency using nanofluid:a comprehensive numerical study

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 139, Issue 5 , 2017 ; 01996231 (ISSN) Khakrah, H ; Shamloo, A ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Due to significant reduction in fossil fuel sources, several researches have been conducted recently to explore modern sources of renewable energy. One of the major fields in the category of renewable energy harnessing devices is parabolic trough solar collector (PTC). Several parameters have effect on the overall efficiency of the PTCs. As the effect of these parameters is coupled to each other, a comprehensive investigation is necessary. In the present study, a numerical analysis is performed to examine the efficiency of PTCs via variation of several governing parameters (e.g., wind velocity magnitude, nanoparticles volume fraction, inlet temperature, and reflector's orientation). A... 

    Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid

    , Article Journal of Cleaner Production ; Volume 162 , 2017 , Pages 121-129 ; 09596526 (ISSN) Iranmanesh, S ; Ong, H. C ; Ang, B. C ; Sadeghinezhad, E ; Esmaeilzadeh, A ; Mehrali, M ; Sharif University of Technology
    Abstract
    In this study, the effect of graphene nanoplatelets (GNP)/distilled water nanofluid on the thermal performance of evacuated tube solar collector (ETSC) water heater was experimentally investigated. The mass percentage of GNP was considered at 0.025, 0.5, 0.075 and 0.1 wt%. The physical and thermal properties of the GNP nanofluids including stability, specific heat capacity, viscosity and thermal conductivity were investigated. The thermal efficiency tests on the solar collector were carried out for varying volumetric flow rate of 0.5, 0.1, and 1.5 L/min while the ASHRAE standard 93–2003 was considered to calculate the efficiency of the collector. The results indicated that the solar... 

    H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 34 , 2017 , Pages 22005-22014 ; 03603199 (ISSN) Biglarian, M ; Rahimi Gorji, M ; Pourmehran, O ; Domairry, G ; Sharif University of Technology
    Abstract
    This paper investigates numerically the problem of unsteady magnetohydrodynamic nanofluid flow and heat transfer between parallel plates due to the normal motion of the porous upper plate. The governing equations are solved via the fourth-order Runge-Kutta method. Different kind of nanoparticles is examined. The effects of kind of nanoparticle, nanofluid volume fraction, expansion ratio, Hartmann number, Reynolds number on velocity and temperature profiles are considered. Also effect of different types of nanoparticles is examined. Results indicate that velocity decreases with increase of Hartmann number due to effect of Lorentz forces. Rate of heat transfer increase with increase of... 

    Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 117 , 2017 , Pages 70-79 ; 02552701 (ISSN) Mokhtari, M ; Hariri, S ; Barzegar Gerdroodbary, M ; Yeganeh, R ; Sharif University of Technology
    Abstract
    In this article, a three-dimensional numerical simulation is performed to investigate the effect of magnetic field on the heat transfer of ferrofluid inside a tube which is equipped with twisted tape. This work comprehensively focused on the flow feature and temperature distribution of ferrofluid in presence of non-uniform magnetic field while ferrofluid swirled inside a tube with twisted tape. In this study, it is assumed that the ferrofluid is single phase and laminar and constant heat flux is applied on the outside of the tube. The magnetic field is established by wire in parallel direction with the axis of the tube. The base fluid is water with 0.86 Vol% Nano particles (Fe3O4). The... 

    An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels

    , Article Journal of Thermal Analysis and Calorimetry ; 2017 , Pages 1-10 ; 13886150 (ISSN) Pourfayaz, F ; Sanjarian, N ; Kasaeian, A ; Razi Astaraei, F ; Sameti, M ; Nasirivatan, S ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    In this paper, with the aim of enhancing the thermal conductivity of the fluid, a nanofluid is prepared based on SiO2. A series of experimental tests were carried out for both laminar and forced convection regimes in a horizontal tube with two different geometric shapes (circular and square cross section) subjected to constant wall heat flux (4735 W m−2). A comparative study has been done to investigate the effect of the geometry on the convective heat transfer. Moreover, the effect of the volume concentration on the behavior of the nanofluid and the base fluid was evaluated by comparing various volume concentrations (0.05, 0.07 and 0.2%). The experiments were done under two different... 

    Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 314-323 ; 03048853 (ISSN) Fadaei, F ; Shahrokhi, M ; Molaei Dehkordi, A ; Abbasi, Z ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source... 

    Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition

    , Article Journal of Molecular Liquids ; Volume 232 , 2017 , Pages 351-360 ; 01677322 (ISSN) Erfani Gahrooei, H. R ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Condensate and water banking around gas condensate wells result in vital well deliverability issues. Wettability alteration of near wellbore region to gas wetting condition is known to be the most novel and the only permanent method, to improve condensate well productivity. In this work, a water based nanofluid is used to change the wettability of sandstone reservoir rocks from strongly liquid wetting to intermediate gas wetting condition. Static contact angle measurements demonstrated significant increase of liquid phase contact angle as a result of chemical treatment with SurfaPore M nanofluid. The characteristics of SurfaPore M adsorption on sandstone rock are quantified through kinetic... 

    Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 428 , 2017 , Pages 457-463 ; 03048853 (ISSN) Amani, M ; Amani, P ; Kasaeian, A ; Mahian, O ; Kasaeian, F ; Wongwises, S ; Sharif University of Technology
    Abstract
    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe2O4/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is... 

    Investigation the effect of super hydrophobic titania nanoparticles on the mass transfer performance of single drop liquid-liquid extraction process

    , Article Separation and Purification Technology ; Volume 176 , 2017 , Pages 107-119 ; 13835866 (ISSN) Hatami, A ; Bastani, D ; Najafi, F ; Sharif University of Technology
    Abstract
    Hydrophobic titania nanoparticles were synthesized by a novel in situ sol-gel method and applied in a single drop liquid-liquid extraction column to enhance the overall dispersed-phase mass transfer coefficient (Kod). The chemical system of toluene, acetic acid and water was used, and the direction of solute (acetic acid) mass transfer was from dispersed phase, including: toluene and acetic acid to the continuous phase of water. For such system, much of the mass transfer resistance exists in the dispersed phase, which is nonpolar organic liquid. Hence, modified titania nanoparticles (MTNP's), prepared by sol-gel route, in five different concentrations of 0.001–0.005 wt.% were added in the... 

    Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 53, Issue 4 , 2017 , Pages 1343-1354 ; 09477411 (ISSN) Jamilpanah, P ; Pahlavanzadeh, H ; Kheradmand, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of... 

    Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field

    , Article Applied Thermal Engineering ; Volume 114 , 2017 , Pages 415-427 ; 13594311 (ISSN) Sadeghinezhad, E ; Mehrali, M ; Akhiani, A. R ; Tahan Latibari, S ; Dolatshahi Pirouz, A ; Metselaar, H. S. C ; Mehrali, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The effect of a permanent magnetic field on the heat transfer characteristics of hybrid graphene-magnetite nanofluids (hybrid nanofluid) under forced laminar flow was experimentally investigated. For this purpose, a reduced graphene oxide-Fe3O4 was synthesized by using two-dimensional (2D) graphene oxide, iron salts and tannic acid as the reductant and stabilizer. Graphene sheets acted as the supporting materials to enhance the stability and thermal properties of magnetite nanoparticles. The thermo-physical and magnetic properties of this hybrid nanofluid have been widely characterized and it shows that the thermal conductivity increased up to 11%. The hybrid nanofluid behaves as a Newtonian...