Loading...
Search for: navier-stokes-equations
0.008 seconds
Total 222 records

    A numerical analysis of vapor flow in concentric annular heat pipes

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 126, Issue 3 , 2004 , Pages 442-448 ; 00982202 (ISSN) Nouri Borujerdi, A ; Layeghi, M ; Sharif University of Technology
    2004
    Abstract
    A numerical method based on the SIMPLE algorithm has been developed for the analysis of vapor flow in a concentric annular heat pipe. The steady-state response of a concentric annular heat pipe to various heat fluxes in the evaporator and condenser sections are studied. The fluid flow and heat transfer in the annular vapor space are simulated using Navier-Stokes equations. The governing equations are solved numerically, using finite volume approach. The vapor pressure and temperature distributions along a concentric annular heat pipe are predicted for a number of symmetric test cases. The vapor flow reversal and transition to turbulence phenomena are also predicted. The results are compared... 

    Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray's in flapping motion

    , Article Applied Ocean Research ; Volume 109 , 2021 ; 01411187 (ISSN) Safari, H ; Abbaspour, M ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Manta ray swimming or bio-inspiration propulsion system, as a special type of marine propulsion system, is used for submersible vehicles that require high-speed maneuverability and stability, such as glider and AUV. In a manta ray swimming, the thrust force is generated by a couple of undulation and oscillation of wing, so that the direction of undulation wave and oscillation is upright and perpendicular to the direction of thrust force, respectively. It is possible to combine these two movement modes (flapping motion) on the three-dimensional model without considering the effects of wing twisting and flexibility to simplify and better understand the physical behaviors or special study of... 

    Solving Preconditioned Euler/Navier-Stokes Equations for Numerical Simulation of Cavitating Flows Using a Barotropic Model

    , M.Sc. Thesis Sharif University of Technology Ezzatneshan, Eslam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    Cavitation can occur in many fluid systems such as pumps, nozzles, hydrofoils and submarine vehicles and therefore, numerical modeling of this phenomenon has a significant importance. In this study, the numerical simulation of the cavitating flows through the Euler/Navier-Stokes equations employing the interface capturing method associated with a barotropic state law is performed. The system of governing equations is discretized using a cell-centered finite-volume algorithm and the fluxes are evaluated using a central-difference scheme. To account for density jumps across the cavity interface, the numerical dissipation terms with suitable density and pressure sensors are used. Since... 

    Developing a Hybrid Molecular-Continuum Algorithm to Simulate Gas Flow in Micro-Nano Propulsion Systems

    , Ph.D. Dissertation Sharif University of Technology Roohi Golkhatmi, Ehsan (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    With the rapid development in the application of nano-micro systems in space propulsion systems, it is necessary to obtain accurate analysis of flow field in these devices. New generation of space missions are usually performed by using a network of small-scale satellites. The mission control of such small-scale satellites requires specialized propulsion systems than produce small propulsive forces of about 1 micro-Newton. The main purpose of the current PhD thesis is analysing the flow field in different nano/micro propulsion systems by using a hybrid Navier-Stokes (NS)-direct simulation Monte Carlo (DSMC) method. Nano/micro propulsion systems experience different rarefaction regimes from... 

    Shape Optimization in Pipe

    , M.Sc. Thesis Sharif University of Technology Ghalavandi, Ebrahim (Author) ; Fotouhi Firouzabad, Morteza (Supervisor)
    Abstract
    Shape optimization can be viewed as a part of the important branch of computational mechanics called structural optimization. In structural optimization problems one tries to set up some data of the mathematical model that describe the behavior of a structure in order to find a situation in which the structure exhibits a priori given properties. Nowadays shape optimization represents a vast scientific discipline involving all problems in which the geometry (in a broad sense) is subject to optimization. The problem has to be well posed from the mechanical point of view, requiring a good understanding of the physical background. Then one has to find an appropriate mathematical model that can... 

    Analysis of Industrial Ventilation System in a Welding Shop Considering Health & Hygiene

    , M.Sc. Thesis Sharif University of Technology Behkam, Reza (Author) ; Kazem Zadeh Hannani, Siamak (Supervisor) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Based on progress madein industry, considering the essence of human resource health is an inevitable subject. Ventilation is an important matter which affects the quality and efficiency of production due to its coherence with providing a healthy and suitable workplace. In this regard, there are some settings for industrial ventilation systems which are designed to satisfy related health and hygiene standards.Simulation of ventilation systems based on CFD methods is a great contribution to choose anappropriate ventilation system type. In this study, by modeling the proposed ventilation setting in a 3D environment, we are assured that the system is capable of industrial ventilation in welding... 

    Null Controllability and Stabilizability of Compressible Navier-stokes System in One Dimension

    , M.Sc. Thesis Sharif University of Technology Hosseini Khajouei, Narges Sadat (Author) ; Hesaraki, Mahmoud (Supervisor)
    Abstract
    In this thesis we study the exponential stabilization of the one dimensional compressible Navier-Stokes system, in a bounded interval locally around a constant steady state by a localized distributed control acting only in the velocity equation. In fact this is an analysis of a paper that published by Shirshendu Chowdhury, Debayan Maity, Mithily Ramaswamy and Jean-Pierre Raymond in Journal of Differential Equations. We determine a linear feedback law able to stabilize a nonlinear transformed system. Coming back to the original nonlinear system, we obtain a nonlinear feedback law able to stabilize locally this nonlinear system. The result is providing feedback control laws stabilizing... 

    Numerical Solution of Hypersonic Axisymmetric Flows Including Real Gas Effects Using Compact Finite-Difference Scheme

    , M.Sc. Thesis Sharif University of Technology Khodadadi, Polin (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract

    The numerical solution of the parabolized Navier-Stokes (PNS) equations for accurate computation of hypersonic axisymmetric flowfield with real gas effects is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in the compact PNS scheme to obtain accurate solutions in the vicinity of the shock. To stabilize the numerical solution, numerical dissipation term and filters are used. The main advantage of the present formulation is that the basic flow variables... 

    Numerical Study of Oxygen Enrichment on NO Pollution Spread in an Ignition Chamber

    , M.Sc. Thesis Sharif University of Technology Orshesh, Zohreh (Author) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    In the present study, a 3D combustion chamber was simulated using FLUENT6.32. The objectives were to obtain detailed information on the combustion characteristics and NO formation in the furnace, and also to examine the effect of Oxygen enrichment on the combustion process. The combustion chamber has internal dimensions of 60 cm wide, 90 cm high and 190 cm long. The fuel pipe diameter is 1.25 cm and the air pipe diameter is 3.5 cm. The 3-D Reynolds Averaged Navier Stokes (RANS) equations together with standard k-ε turbulence model are solved by Fluent 6.3. Air/fuel flow rate ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54, 68 lit/min. NO emission was... 

    Extending a hybrid finite-volume-element method to solve laminar diffusive flame

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Vol. 66, issue. 2 , August , 2014 , pp. 181-210 ; ISSN: 10407790 Darbandi, M ; Ghafourizadeh, M ; Sharif University of Technology
    Abstract
    We extend a hybrid finite-volume-element (FVE) method to treat the laminar reacting flow in cylindrical coordinates considering the collocation of all chosen primitive variables. To approximate the advection fluxes at the cell faces, we use the upwind-biased physical influence scheme PIS and derive a few new extended expressions applicable in the cylindrical frame. These expressions are derived for both the Navier-Stokes and reactive flow governing equations, of which the latter expressions are considered novel in the finite-volume formulation. To validate our derived expressions, the current results are compared with the experimental data and other available numerical solutions. The results... 

    Developing a FVBFE method on moving unstructured hybrid grid to simulate ice accretion

    , Article 43rd AIAA Thermophysics Conference 2012 ; 2012 ; 9781624101861 (ISBN) Darbandi, M ; Fard, M ; Naderi, A ; Schneider, G. E ; American Institute of Aeronautics and Astronautics (AIAA) ; Sharif University of Technology
    2012
    Abstract
    In this study, a moving mesh finite-volume-based finite-element (FVBFE) method is suitably extended to simulate the effect of supercooled liquid water droplet content on ice formation and growth on wing sections. The method benefits from the advantages of both finite-volume and finiteelement methods, which promote achieving a more accurate solution and a higher efficient procedure in ice accretion calculations. The method solves the time-dependent Navier-Stokes (NS) equations on unstructured hybrid grid distributions. In this method, the convection terms are approximated at the cell faces using a physical influence upwinding scheme. We also use linear spring approach to move the hybrid mesh.... 

    Receptivity of hypersonic flow over blunt-noses to freestream disturbances using spectral methods

    , Article Computational Fluid Dynamics 2010 - Proceedings of the 6th International Conference on Computational Fluid Dynamics, ICCFD 2010, 12 July 2010 through 16 July 2010 ; July , 2011 , Pages 357-362 ; 9783642178832 (ISBN) Hejranfar, K ; Najafi, M ; Esfahanian, V ; Sharif University of Technology
    2011
    Abstract
    The receptivity of supersonic/hypersonic flows over blunt noses to freestream disturbances is performed by means of spectral collocation methods. The unsteady flow computations are made through solving the full Navier-Stokes equations in 2D. A shock-fitting technique is used to compute unsteady shock motion and its interaction with freestream disturbances accurately in the receptivity study. The computational results for receptivity of a semi-cylinder at Mach 8 is presented and validated by comparison with available theoretical and numerical results. The study shows significant effects of the viscosity on the receptivity process  

    Formation and breakup patterns of falling droplets

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 68, Issue 9 , Jun , 2015 , Pages 1023-1030 ; 10407782 (ISSN) Sharafatmandjoor, S ; Taeibi Rahni, M ; Azwadi Che Sidik, N ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Some interface front patterns of falling droplets are studied via direct numerical solution of the full Navier-Stokes equations governing the system of droplets and the ambient surrounding media as a single-fluid model. We focus on the mutual interactions of the effects of characterizing nondimensional parameters on the formation and break-up of large cylindrical droplets. The investigation of droplet cross sections and deformation angles shows that for moderate values of the Atwood number, increasing the Eötvös number explicitly increases the deformation rate in formation and breakup phenomena. Otherwise, increasing the Ohnesorge number basically amplifies the viscous effects  

    Using an all-speed method to predict high frequency pressure spikes of water hammer with column separation

    , Article 13th International Energy Conversion Engineering Conference, IECEC 2015, 27 July 2015 through 29 July 2015 ; July , 2015 ; 9781624103766 (ISBN) Darbandi, M ; Beige, A. A ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2015
    Abstract
    To extend a procedure to ensure the safe operation of a water reactor, we develop a numerical method to compute the high frequency pressure spikes of water hammer with liquid column separation in pipes. In this regard, we first extend a finite-volume all-speed method to solve the full one-dimensional Navier-Stokes equations. This method is capable of simulating gas and liquid phases as well as the vapor-liquid one. On the other hand, the current extended method should be capable of capturing high frequency pressure spikes, which are formed due to water hammer and column separation in pipes. The existence of such high frequency spikes has been recently reported experimentally by other... 

    Numerical investigation of wall curvature effects on heat transfer and film cooling effectiveness

    , Article Heat Transfer Research ; Volume 47, Issue 6 , 2016 , Pages 559-574 ; 10642285 (ISSN) Shalchi Tabrizi, A ; Taiebi Rahni, M ; Xie, G ; Asadi, M ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    In this research, the problems of adiabatic film-cooling the flat, convex, and concave surfaces are investigated numerically. Two different radii of curvature and one row of vertical injection holes are considered. The Navier-Stokes equations are solved using a fine nonuniform multiblock staggered curvilinear grid and the SIMPLE-based finite volume method. The blowing rates are 0.5 and 1.0 and the mainstream Reynolds number is 10,000. The obtained results indicated that at a low blowing ratio, the cooling effectiveness enhances over the convex surface and reduces over the concave surface compared to the flat surface case. In comparison with the low blowing ratio, the curvature effects at a... 

    Numerical simulations of turbulent flow around side-by-side circular piles with different spacing ratios

    , Article International Journal of River Basin Management ; Volume 15, Issue 2 , 2017 , Pages 227-238 ; 15715124 (ISSN) Beheshti, A. A ; Ataie Ashtiani, B ; Dashtpeyma, H ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Numerical simulations of the turbulent flow around single and side-by-side piles at different spacing ratios (centre-to-centre distance to the pile diameter) with flow Reynolds number of 105 on the fixed flat-bed are presented. The calculations are performed using the computational fluid dynamics model, FLOW-3D, which solves the Navier–Stokes equations in three dimensions with a finite-volume method. The numerical results of time-averaged flow patterns around single and side-by-side piles are validated using the available experimental measurements. At the downstream of the single pile, dimensionless vortex shedding frequency (Strouhal number) is estimated as 0.22. The maximum values of bed... 

    Numerical investigation of blood flow. Part I: In microvessel bifurcations

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 13, Issue 8 , 2008 , Pages 1615-1626 ; 10075704 (ISSN) Jafari, A ; Mousavi, S. M ; Kolari, P ; Sharif University of Technology
    2008
    Abstract
    In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation... 

    Modeling of permeability with the aid of 3D interdendritic flow simulation for equiaxed dendritic structures

    , Article Materials Science and Engineering A ; Volume 475, Issue 1-2 , 2008 , Pages 355-364 ; 09215093 (ISSN) Khajeh, E ; Mirbagheri, S. M. H ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    In this study, the permeability for interdendritic liquid flow through equiaxial mushy zone has been modeled and experimentally measured. In the present work, by applying a virtual dendrite in a micro-domain and solving Navier-Stokes equation, flow pattern around the dendrite has been obtained and then by applying Darcy's law to this 3D domain the permeability has been determined. In this micro-model the influence of solid fraction and geometry of dendrites have been assessed. Numerically determined values of permeabilities have been analyzed by the use of SPSS statistical software. Then an experimental method is used to measure the permeability for flow through equiaxial mushy zone of Pb-Sn... 

    Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics

    , Article International Journal for Numerical Methods in Fluids ; Volume 56, Issue 2 , 2008 , Pages 209-232 ; 02712091 (ISSN) Ataie Ashtiani, B ; Shobeyri, G ; Sharif University of Technology
    2008
    Abstract
    An incompressible-smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate impulsive waves generated by landslides. The governing equations, Navier-Stokes equations, are solved in a Lagrangian form using a two-step fractional method. Landslides in this paper are simulated by a submerged mass sliding along an inclined plane. During sliding, both rigid and deformable landslides mass are considered. The present numerical method is examined for a rigid wedge sliding into water along an inclined plane. In addition solitary wave generated by a heavy box falling inside water, known as Scott Russell wave generator, which is an example for simulating falling rock avalanche into... 

    Simulation of rarefied micro to nano gas flows using improved slip flow models

    , Article 37th AIAA Fluid Dynamics Conference, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 1 , 2007 , Pages 576-583 ; 1563478978 (ISBN); 9781563478970 (ISBN) Darbandi, M ; Rikhtegar, F ; Schneider, G. E ; Sharif University of Technology
    2007
    Abstract
    If the hydrodynamic diameter of a channel is comparable with the mean free path of the gas molecules moving inside the channel, the fluid can no longer be considered to be in thermodynamic equilibrium and a variety of non-continuum or rarefaction effects can occur. To avoid enormous complexity and extensive numerical cost encountered in modeling of nonlinear Boltzmann equations, the Navier-Stokes equations can be solved considering the concepts of slip flow regime and applying slip velocity boundary conditions at the solid walls. The high-order slip models can, in some cases, extend the range of applicability of the Navier-Stokes equations beyond Kn = 0.1, where the accuracy of first-order...