Loading...
Search for: navier-stokes-equations
0.012 seconds
Total 222 records

    Numerical simulation of inlet buzz

    , Article Aerospace Science and Technology ; Volume 97 , 2020 Abedi, M ; Askari, R ; Soltani, M. R ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    Comprehensive numerical analyses are conducted to simulate and capture “Buzz” phenomenon in a supersonic mixed compression air inlet. The buzz is an unsteady self-sustained feature that occurs in supersonic inlets, especially when operating in their subcritical condition. In such a situation, the shock waves oscillate along the inlet and cause mass flow fluctuations inside the inlet that will deteriorate the engine performance significantly. An axisymmetric unsteady numerical simulation was used to solve the Navier–Stokes equations combined with the URANS SST k–ω turbulence model. The simulations for two different free-stream Mach numbers of M∞=2.0 and 2.2 and at two specific subcritical... 

    Controlled drug delivery using the magnetic nanoparticles in non-Newtonian blood vessels

    , Article Alexandria Engineering Journal ; 2020 Abu Hamdeh, N. H ; Bantan, R. A. R ; Aalizadeh, F ; Alimoradi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Fouling in blood flow is very common and may decrease the blood flow in human body and lead to critical health issues. Upon injury in a blood vessel, the body's defensive system triggers a process to create a blood clot called “Thrombus”, which prevents bleeding. Blood clots are formed by a combination of blood cells, platelets, and fibrins. In this study, we investigate a controlled drug delivery using the magnetic nanoparticles in blood vessels under the influence of magnetic fields. For this purpose the Maxwell and the Navier-Stokes equations for the system are solved. In contrary to the previous studies it is assumed that the blood is a non-Newtonian fluid. The number of particles has... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; 2020 Alizadeh, M. R ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Ershadnia, R ; Amooie, M. A ; Shams, R ; Hajirezaie, S ; Liu, Y ; Jamshidi, S ; Soltanian, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A thorough understanding and accurate prediction of non-Newtonian fluid flow dynamics in rotating annular media are of paramount importance to numerous engineering applications. This is in particular relevant to oil and gas industry where this type of flow could occur during, e.g., drilling, well completion, and enhanced oil recovery scenarios. Here, mathematically we report on physical-based (numerical) and data-driven (intelligent) modeling of three-dimensional laminar flow of non-Newtonian fluids driven by axial pressure gradient in annular media that consist of a coaxially rotating inner cylinder. We focus on the dynamics of pressure loss ratio (PLR)—the ratio of total pressure loss in... 

    A high-order nodal discontinuous Galerkin method to solve preconditioned multiphase Euler/Navier-Stokes equations for inviscid/viscous cavitating flows

    , Article International Journal for Numerical Methods in Fluids ; Volume 92, Issue 5 , 2020 , Pages 478-508 Hajihassanpour, M ; Hejranfar, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this study, a high-order accurate numerical method is applied and examined for the simulation of the inviscid/viscous cavitating flows by solving the preconditioned multiphase Euler/Navier-Stokes equations on triangle elements. The formulation used here is based on the homogeneous equilibrium model considering the continuity and momentum equations together with the transport equation for the vapor phase with applying appropriate mass transfer terms for calculating the evaporation/condensation of the liquid/vapor phase. The spatial derivative terms in the resulting system of equations are discretized by the nodal discontinuous Galerkin method (NDGM) and an implicit dual-time stepping... 

    An implicit dual-time stepping high-order nodal discontinuous Galerkin method for solving incompressible flows on triangle elements

    , Article Mathematics and Computers in Simulation ; Volume 168 , 2020 , Pages 173-214 Hajihassanpour, M ; Hejranfar, K ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this work, a high-order nodal discontinuous Galerkin method (NDGM) is developed and assessed for the simulation of 2D incompressible flows on triangle elements. The governing equations are the 2D incompressible Navier–Stokes equations with the artificial compressibility method. The discretization of the spatial derivatives in the resulting system of equations is made by the NDGM and the time integration is performed by applying the implicit dual-time stepping method. Three numerical fluxes, namely, the local Lax–Friedrich, Roe and AUSM+-up are formulated and applied to assess and compare their accuracy and performance in the simulation of incompressible flows using the NDGM. Several... 

    Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 12 , 2020 , Pages 1397-1408 Nokhbatolfoghahaei, H ; Bohlouli, M ; Adavi, K ; Paknejad, Z ; Rezai Rad, M ; khani, M. M ; Salehi-Nik, N ; Khojasteh, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in... 

    Phenomenological investigation of drop manipulation using surface acoustic waves

    , Article Microgravity Science and Technology ; Volume 32, Issue 6 , 2020 , Pages 1147-1158 Sheikholeslam Noori, M ; Shams Taleghani, A ; Taeibi Rahni, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    This paper aims at the investigation of acoustic streaming produced by surface acoustic waves (SAWs) in a drop. Computational simulation of acoustofluidic phenomenon, using lattice Boltzmann method (LBM), presenting acoustic applications in flow control, and a relatively complete parametric study are the motivations of this work. For this purpose, a computational fluid dynamics modeling based on multi-relaxation time multi-component multiphase color gradient lattice Boltzmann method was used. The simulations were carried out at wave frequencies ranging from 20 MHz to 271 MHz and wave amplitudes ranging from 0.5 nm to about 350 nm. First, the non-dimensional form of Navier-Stokes equations... 

    Computational inertial microfluidics: a review

    , Article Lab on a Chip ; Volume 20, Issue 6 , 2020 , Pages 1023-1048 Razavi Bazaz, S ; Mashhadian, A ; Ehsani, A ; Saha, S. C ; Krüger, T ; Ebrahimi Warkiani, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Since the discovery of inertial focusing in 1961, numerous theories have been put forward to explain the migration of particles in inertial flows, but a complete understanding is still lacking. Recently, computational approaches have been utilized to obtain better insights into the underlying physics. In particular, fundamental aspects of particle focusing inside straight and curved microchannels have been explored in detail to determine the dependence of focusing behavior on particle size, channel shape, and flow Reynolds number. In this review, we differentiate between the models developed for inertial particle motion on the basis of whether they are semi-analytical, Navier-Stokes-based,... 

    Impact of trim on added resistance of KRISO container ship (KCS) in head waves: An experimental and numerical study

    , Article Ocean Engineering ; Volume 211 , 2020 Shivachev, E ; Khorasanchi, M ; Day, S ; Turan, O ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, added resistance and motion responses of KRISO Container Ship (KCS) were evaluated experimentally and numerically in six different trim angles. A series of towing tank experiments were performed for six different trim angles at design speed in calm water and regular head waves. The ship motions and added resistance were measured for several wavelength conditions considering short and long wave ranges with wave steepness of 1/60. Next, computations of the towed model in calm water and waves were performed using Unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD and 3-D potential methods. Effects of trim angles on added resistance were analysed and results concerning the... 

    Effects of Preheating and CO2 Dilution on Oxy-MILD Combustion of Natural Gas

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 141, Issue 12 , 2019 ; 01950738 (ISSN) Moghadasi, M. H ; Riazi, R ; Tabejamaat, S ; Mardani, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    Oxy-moderate or intense low-oxygen dilution (MILD) combustion, which is a novel combination of oxy-fuel technology and MILD regime, is numerically studied in the present work. The effects of external preheating and CO2 dilution level on the combustion field, emission, and CO formation mechanisms are investigated in a recuperative laboratory-scale furnace with a recirculating cross-flow. Reynolds-averaged Navier-Stokes (RANS) equations with eddy dissipation concept (EDC) model are employed to perform a 3-D simulation of the combustion field and the turbulence-chemistry interactions. In addition, a well-stirred reactor (WSR) analysis is conducted to further examine the chemical kinetics of... 

    Ethanol spray combustion under a MILD condition: a chemical kinetic study

    , Article Energy and Fuels ; Volume 33, Issue 11 , 2019 , Pages 11861-11886 ; 08870624 (ISSN) Karimi Motaalegh Mahalegi, H ; Mardani, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Moderate or intense low-oxygen dilution (MILD) combustion of liquid fuels has attracted attention because of its advantages in industrial burners and gas turbine applications. Here, numerical investigation has been conducted on an experimental MILD turbulent spray burner. The H∥ flame of Delft spray in a hot co-flow burner is selected, and the Reynolds averaged Navier-Stokes/eddy dissipation concept framework with 40 species/180 reversible reactions through a skeletal chemical mechanism is used in addition to unsteady Lagrangian tracking of spray droplets to investigate the flame structure and chemical kinetic of reacting flow field. At first, current numerical results were compared with... 

    Numerical investigation of gaseous hydrogen and liquid oxygen combustion under subcritical condition

    , Article Energy and Fuels ; Volume 33, Issue 9 , 2019 , Pages 9249-9271 ; 08870624 (ISSN) Mardani, A ; Ghasempour Farsani, A ; Farshchi, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    This study is on combustion modeling of gaseous hydrogen and cryogenic liquid oxygen at the subcritical condition for the well-known Mascotte laboratory combustor. The proposed strategy relies on the hybrid Eulerian-Lagrangian framework in which the continuous phase is evaluated by Reynolds Average Navier-Stokes (RANS) equations and the quick discretization method. The dispersed phase of the combustion field is evaluated by the Discrete Phase Method (DPM). The Eddy Dissipation Concept (EDC) has been performed for combustion-turbulence interaction modeling. Effects of the turbulence model, chemical kinetic mechanism, equation of state, and inlet momentum jet flux are investigated in terms of... 

    Investigation of the transient growth in plane jet by non-modal stability analysis

    , Article Fluid Dynamics Research ; Volume 51, Issue 5 , 2019 ; 01695983 (ISSN) Gohardehi, S ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Linear stability analysis is used to characterize the dynamics of a plane jet by incorporating non-modal stability analysis besides classical global temporal stability analysis. It is explained that similar shapes of different global modes are the result of non-normal characteristics of linearized Navier Stokes equations. Optimal initial disturbances and their eigenfunctions together with transient energy growth are obtained for different time horizons and Reynolds numbers of the jet in the linear unstable configuration. These structures are localized at the upstream of the jet nozzle at the boundary layer. The transient growth of the inlet perturbation in limited time bounds is found in the... 

    Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 142 , 2019 ; 02552701 (ISSN) Maleki Bagherabadi, K ; Sani, M ; Saidi, M. S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Micro-mixers are considered as vital components of Micro Total Analysis systems (μTAS). Major objective in the design of micro-mixers is achieving high mixing quality in short mixing times. In this paper, numerical simulation of some micro-mixer designs has been carried out to understand the detailed flow pattern and thereby to propose modifications for improving mixing efficiency. It is well known that inducing convection will provide turbulent like behavior with corresponding mixing enhancement. In micro systems to drive the flow, electro-osmotic force is usually used by introducing electrodes. In this work, mixing electrodes have been implemented to induce convection and eddies. This... 

    An implicit dual-time stepping spectral difference lattice Boltzmann method for simulation of viscous compressible flows on structured meshes

    , Article Meccanica ; Volume 54, Issue 10 , 2019 , Pages 1561-1581 ; 00256455 (ISSN) Ghaffarian, A ; Hejranfar, K ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this work, the spectral difference lattice Boltzmann method (SDLBM) is extended and applied for accurately computing two-dimensional viscous compressible flows on structured meshes. Here, the compressible form of the discrete Boltzmann-BGK equation with the Watari model is considered and the numerical solution of the resulting LB equation is obtained by using the spectral difference method. The main benefit of the use of the LB method in simulating compressible flows is that a same formulation can be applied to compute the inviscid and viscous portions of the flowfield. Note that the LB formulation for simulating the viscous flows is the same as that used for the inviscid ones, however,... 

    New hybrid finite volume-thermal lattice Boltzmann method, based on multi relaxation time collision operator

    , Article International Journal of Heat and Mass Transfer ; Volume 138 , 2019 , Pages 1281-1294 ; 00179310 (ISSN) Salimi, M. R ; Alizadeh Seresht, E ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Hybrid FVM-LBM schemes are developed in the past few years to use capabilities of both Navier-Stokes based finite volume method (FVM) and lattice Boltzmann method (LBM) to solve macro-meso multiscale problems. In this scheme, the major task is to develop some lifting relations that reconstruct distribution functions in LBM sub-domain from macroscopic variables and their derivatives. The macroscopic variables are computed using Navier-Stokes based FVM in macroscale sub-domain, while distribution functions are computed using LBM in mesoscale sub-domain. The pioneer works in this area used the single relaxation time (SRT) version of LBM. However, it is known that the numerical stability and... 

    Numerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical rings

    , Article Advanced Powder Technology ; Volume 30, Issue 7 , 2019 , Pages 1338-1347 ; 09218831 (ISSN) Nakhchi, M. E ; Esfahani, J. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Numerical analysis of the nanofluid flow characteristics of perforated conical rings in a heat exchanger tube has been investigated under constant wall temperature condition. The pitch ratio of the perforated conical rings is 4 and the number of holes is varied from 0 (typical conical ring) to 10. The flow regime is fully turbulent with the Reynolds number is varied from 5000 to 14,000 and Cu-water nanofluid 0<ϕ<1.5% is selected as the working fluid. The main novelty of this paper is to perform a 3D simulation of this problem because some previous studies using similar geometry were restricted to experimental analysis. The Reynolds averaged Navier Stokes (RANS) equations are solved with the... 

    Hysteretic heat transfer study of liquid–liquid two-phase flow in a T-junction microchannel

    , Article International Journal of Heat and Fluid Flow ; Volume 77 , 2019 , Pages 366-376 ; 0142727X (ISSN) Moezzi, M ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Liquid–liquid two-phase flow in microchannels is capable of boosting the heat removal rate in cooling processes. Formation of different two-phase flow patterns which affect the heat transfer rate is numerically investigated here in a T-junction containing water-oil flow. For this purpose, the finite element method (FEM)is applied to solve the unsteady two-phase Navier–Stokes equations along with the level set (LS)equation in order to capture the interface between phases. It is shown that the two-phase flow pattern in microchannels depends on the flow initial condition which causes hysteresis effect in two-phase flow. In this study, the hysteresis is observed in flow pattern and consequently... 

    Hydrogen enrichment of methane and syngas for MILD combustion

    , Article International Journal of Hydrogen Energy ; Volume 44, Issue 18 , 2019 , Pages 9423-9437 ; 03603199 (ISSN) Mardani, A ; Karimi Motaalegh Mahalegi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Moderate or Intense Low-oxygen Dilution (MILD) combustion is a technology with important characteristics such as significant low emission and high-efficiency combustion. The hydrogen enrichment of conventional fuels is also of interest due to its favorable characteristics, such as low carbon-containing pollutants, high reaction intensity, high flammability, and thus fuel usage flexibility. In this study, the effects of adding hydrogen to methane and syngas fuels have been investigated under conditions of MILD combustion through numerical simulation of a well-set-up MILD burner. The Reynolds-Averaged Navier-Stokes (RANS) approach is adopted along the Eddy Dissipation Concept (EDC) combustion...