Loading...
Search for: navier-stokes-equations
0.014 seconds
Total 222 records

    A comparative numerical study on the performances and vortical patterns of two bioinspired oscillatory mechanisms: Undulating and pure heaving

    , Article Applied Bionics and Biomechanics ; Volume 2015 , 2015 ; 11762322 (ISSN) Ebrahimi, M ; Abbaspour, M ; Sharif University of Technology
    IOS Press  2015
    Abstract
    The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces.This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian- Eulerian (ALE) framework domain containing a 2D NACA0012 foil... 

    Formation and breakup patterns of falling droplets

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 68, Issue 9 , Jun , 2015 , Pages 1023-1030 ; 10407782 (ISSN) Sharafatmandjoor, S ; Taeibi Rahni, M ; Azwadi Che Sidik, N ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Some interface front patterns of falling droplets are studied via direct numerical solution of the full Navier-Stokes equations governing the system of droplets and the ambient surrounding media as a single-fluid model. We focus on the mutual interactions of the effects of characterizing nondimensional parameters on the formation and break-up of large cylindrical droplets. The investigation of droplet cross sections and deformation angles shows that for moderate values of the Atwood number, increasing the Eötvös number explicitly increases the deformation rate in formation and breakup phenomena. Otherwise, increasing the Ohnesorge number basically amplifies the viscous effects  

    Heat transfer analysis of a porously covered heated square cylinder, using a hybrid Navier-Stokes-lattice Boltzmann numerical method

    , Article International Journal of Thermal Sciences ; Volume 91 , May , 2015 , Pages 59-75 ; 12900729 (ISSN) Salimi, M. R ; Taeibi Rahni, M ; Jam, F ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    In this work, two-dimensional laminar flow and heat transfer across a heated square cylinder, covered by a porous layer in a plane channel have been numerically investigated. The flow and thermal fields inside the porous layer were simulated using BrinkmaneForchmeyer extended Darcy model. Simulations were performed in different Reynolds numbers (Re = 60, 120, 160, and 200), porosities (ω = 0.7, 0.87, and 0.96), solid to fluid thermal conductivity ratios (λR = 10, 200, and 2000) and blockage ratios (BR = 0.5, 0.25 and 0.125). The effects of the mentioned parameters on pressure drop and heat transfer rate were investigated in detail. Also, the contribution of each side of the central squared... 

    Influence of the angle of incident shock wave on mixing of transverse hydrogen micro-jets in supersonic crossflow

    , Article International Journal of Hydrogen Energy ; Volume 40, Issue 30 , August , 2015 , Pages 9590-9601 ; 03603199 (ISSN) Barzegar Gerdroodbary, M ; Jahanian, O ; Mokhtari, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A three-dimensional numerical study has been performed to investigate the influence of angle of shock waves on sonic transverse Hydrogen micro-jets subjected to a supersonic crossflow. This study focuses on mixing of the Hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Flow structure and fuel/air mixing mechanism were investigated numerically. Parametric studies were conducted on the angle of shock wave by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of shock incident. These flow... 

    Hydrodynamic and electrochemical modeling of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 16, Issue 2 , 2015 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Mollazadeh, M ; Sharif University of Technology
    EDP Sciences  2015
    Abstract
    Two and three dimensional modeling of a single cell of vanadium redox flow battery has been done thoroughly according to electrochemical and fluid mechanic equations in this study. The modeling has been done in stationary state and its results have been presented in three chemical, electrical and mechanical sub models. The parametric analysis on some of important factors in cell operation demonstrated that increase in electrode and membrane conductivity and electrode porosity contributes to electric potential increase in cells. Also operational temperature increase leads to decrease in cells' voltage. Better fluid distribution on the electrode surface area results in better cell operation,... 

    Using an all-speed method to predict high frequency pressure spikes of water hammer with column separation

    , Article 13th International Energy Conversion Engineering Conference, IECEC 2015, 27 July 2015 through 29 July 2015 ; July , 2015 ; 9781624103766 (ISBN) Darbandi, M ; Beige, A. A ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2015
    Abstract
    To extend a procedure to ensure the safe operation of a water reactor, we develop a numerical method to compute the high frequency pressure spikes of water hammer with liquid column separation in pipes. In this regard, we first extend a finite-volume all-speed method to solve the full one-dimensional Navier-Stokes equations. This method is capable of simulating gas and liquid phases as well as the vapor-liquid one. On the other hand, the current extended method should be capable of capturing high frequency pressure spikes, which are formed due to water hammer and column separation in pipes. The existence of such high frequency spikes has been recently reported experimentally by other... 

    Simulation of thermal profile in a single pellet during drying process with CFD method

    , Article Proceedings of the 24th International Mining Congress of Turkey, IMCET 2015, 14 April 2015 through 17 April 2015 ; 2015 , Pages 797-803 ; 9786050107050 (ISBN) Gitiara, A ; Namehi, A ; Vali, H ; Shahrokhshahi, H. R ; Soltani, H ; Alamdari, E. K ; Cheraghi, A ; Karadeniz, M ; Gulsun Kilic, M ; Torun Bilgic, E ; Basarir, H ; Onel, O ; Sharif University of Technology
    TMMOB Maden Muhendisleri Odasi  2015
    Abstract
    Green iron oxide pellets are indurated with thermal treatment in pelletizing plant to achieve sufficient mechanical properties and to be used in iron-steel industry. In the first stage, the pellets are dried with hot air coming from the firing unit. High heat transfer makes the evaporation rate exceeding the outgoing steam rate from the pellets and as a result, increasing the inner pressure of the pellets and fragment. On the other hand, low heat transfer causes low production rate. Using the related equations and considering the pellets' moisture and porosity and applying the pellets' condition on parameters such as specific heat capacity and heat conductivity, an acceptable standard is... 

    Laminar falling film flow of aqueous Li Br solution on a horizontal elliptical tube

    , Article International Journal of Fluid Mechanics Research ; Volume 40, Issue 4 , 2013 , Pages 324-343 ; 10642277 (ISSN) Abyaneh, M. H. J ; Saidi, M. H ; Sharif University of Technology
    2013
    Abstract
    Flow hydrodynamics of laminar falling film of aqueous Li Br solution (Li Br - H2O) on a horizontal elliptical tube has been investigated in this research. The film velocity distribution and film thickness, namely, the flow characteristics are determined by solving analytically simultaneous simplified Navier - Stokes equations and continuity equation in polar and Cartesian coordinates. The analysis is based on steady state laminar flow of falling liquid film of Li Br - H2O on a horizontal elliptical tube in polar model and Cartesian model (CM), for cases in which traction on the film surface is considered negligible. Models are compared with each other in three cases of aspect ratios (Ar),... 

    Numerical investigation of the effect of sprue base design on the flow pattern of aluminum gravity casting

    , Article Defect and Diffusion Forum ; Volume 344 , October , 2013 , Pages 43-53 ; 10120386 (ISSN) ; 9783037859049 (ISBN) Baghani, A ; Bahmani, A ; Davami, P ; Varahram, N ; Shabani, M. O ; Fisher D. J ; Sharif University of Technology
    2013
    Abstract
    Effects of sprue base size and design on flow pattern during aluminum gravity casting have been investigated by employing different sprue base sizes and using computational fluid dynamics (CFD). Calculations was carried out using SUTCAST simulation software based on solving Navier-Stokes equation and tracing the free surface using SOLA-VOF algorithm. Flow pattern was analyzed with focusing on streamlines and velocity distribution in sprue base, runner and in-gate. Increasing well size was produced a vortex flow at the bottom of sprue base which increased the surface velocity of liquid metal in runner. Using a rather big sprue well could eliminate vena contracta, but in-gate velocity was... 

    Effect of liquid viscosity on instability of high-spinning partially-filled shell rotors

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 6 , 2013 ; 02194554 (ISSN) Firouz Abadi, R. D ; Permoon, M. R ; Sharif University of Technology
    2013
    Abstract
    In this study, the instability of spinning cylindrical shells partially filled with viscous liquid is investigated. Based on the Navier-Stokes equations for the incompressible flow, a 2D model is developed for liquid motion at each section of the cylinder. The governing equations of the cylinder vibrations are obtained based on the first-order shear deformable shell theory. The nonpenetration and no-slip boundary conditions of the flow on the wetted surface of the cylinder relate the liquid motion to the shell vibrations. Also the liquid pressure exerted on the cylinder wall combines the vibrations of the rotary cylinder to the liquid motion. By using the obtained coupled liquid-structure... 

    Computation of the stresses in a moving reference system in a half-space due to a traversing time-varying concentrated load

    , Article Computers and Mathematics with Applications ; Volume 65, Issue 11 , 2013 , Pages 1849-1862 ; 08981221 (ISSN) Dehestani, M ; Vafai, A ; Mofid, M ; Szidarovszky, F ; Sharif University of Technology
    2013
    Abstract
    An analytical approach is employed to investigate the transient and steady-state stresses in an isotropic, homogeneous half-space subjected to moving concentrated loads with subsonic speeds. Applying the Stokes-Helmholtz resolution to the Navier's equation of motion for the half-space results in a system of wavetype partial differential equations. Based on the new moving coordinate system, a modified system of partial differential equations is obtained. Applying a concurrent two-sided and one-sided Laplace transformation, this system is modified to a system of ordinary differential equations, the solutions of which are obtained with respect to boundary conditions. The transformed transient... 

    A coupled wellbore-reservoir flowmodel for numerical pressure transient analysis in vertically heterogeneous reservoirs

    , Article Journal of Porous Media ; Volume 16, Issue 5 , 2013 , Pages 395-400 ; 1091028X (ISSN) Khadivi, K ; Soltanieh, M ; Farhadpour, F. A ; Sharif University of Technology
    2013
    Abstract
    Pressure transient analysis in vertically heterogeneous reservoirs is examined. The inclusion of a separate model for the free fluid flow in the wellbore is essential to allow for hydraulic communication and mixing of the fluid issuing from different reservoir layers. A two-dimensional model coupling Darcy flow in the reservoir with Navier-Stokes flow in the wellbore is developed and solved by the finite element technique. The coupled wellbore-reservoir flow model is used to analyze a layered reservoir with an abrupt change in permeability and a thick formation showing a gradual change in permeability with depth. Contrary to conventional reservoir models, this new model is able to capture... 

    Investigation of free surface flow generated by a planing flat plate using smoothed particle hydrodynamics method and FLOW3D simulations

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 227, Issue 2 , 2013 , Pages 125-135 ; 14750902 (ISSN) Ghadimi, P ; Dashtimanesh, A ; Farsi, M ; Najafi, S ; Sharif University of Technology
    2013
    Abstract
    In this article, smoothed particle hydrodynamics method is applied in order to study the free surface flow generated by two-dimensional planing flat plate. For this purpose, a two-dimensional smoothed particle hydrodynamics code is developed and validated by the well-known dam breaking problem. Four trim angles and three different velocities are considered to perform a parametric study to examine their physical effects. The obtained results from smoothed particle hydrodynamics are compared against the corresponding Reynolds-averaged Navier Stokes solutions. It is observed that at lower velocities, there exists a good agreement between the smoothed particle hydrodynamics and Reynolds-averaged... 

    Centrifugal compressor shape modification using a proposed inverse design method

    , Article Journal of Mechanical Science and Technology ; Volume 27, Issue 3 , 2013 , Pages 713-720 ; 1738494X (ISSN) Nili Ahmadabadi, M ; Poursadegh, F ; Sharif University of Technology
    2013
    Abstract
    This paper is concerned with a quasi-3D design method for the radial and axial diffusers of a centrifugal compressor on the meridional plane. The method integrates a novel inverse design algorithm, called ball-spine algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain, of which unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, unknown walls are composed of a set of virtual balls that move freely along specified directions called spines. The difference between target and current pressure distributions causes the flexible boundary to deform... 

    Numerical simulation and parametric study of a supersonic intake

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 3 , January , 2013 , Pages 467-479 ; 09544100 (ISSN) Soltani, M. R ; Younsi, J. S ; Farahani, M ; Masoud, A ; Sharif University of Technology
    2013
    Abstract
    A computational fluid dynamics code was developed to compute the flow inside and around a supersonic external compression axisymmetric intake. The code solves the Reynolds-averaged Navier-Stokes equations using an explicit finite volume method in a structured grid and uses the Baldwin-Lomax algebraic model to compute the turbulent viscosity coefficient. Experiments were performed to validate the predicted results and good agreements are achieved. In the next part of the research, a parametric study was undertaken using the designed base case at a constant Mach number of 2 and at 0° angle of attack. The effects of various important parameters such as free stream Mach number, spike deflection... 

    Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 2 , 2013 , Pages 140-150 ; 03151468 (ISSN) Razmi, A. M ; Bakhtyar, R ; Firoozabadi, B ; Barry, D. A ; Sharif University of Technology
    2013
    Abstract
    The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particleladen jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier-Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection-diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was... 

    Experimental and numerical investigation of radial flow compressor volute shape effects in characteristics and circumferential pressure non-uniformity

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1753-1764 ; 10263098 (ISSN) Mojaddam, M ; Hajilouy Benisi, A ; Movahhedy, M. R ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a radial ow compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and ow parameters at the inlet and outlet of the compressor. The three-dimensional ow field model of the compressor was obtained numerically solving Navier-Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross section geometry.... 

    Applying a hybrid DSMC/Navier-Stokes frame to explore the effect of splitter catalyst plates in micro/nanopropulsion systems

    , Article Sensors and Actuators, A: Physical ; Volume 189 , January , 2013 , Pages 409-419 ; 09244247 (ISSN) Darbandi, M ; Roohi, E ; Sharif University of Technology
    2013
    Abstract
    In this study, we apply a hybrid direct simulation Monte Carlo (DSMC)/Navier-Stokes (NS) frame to simulate the effects of catalyst or splitter plates in propulsive efficiency of micro/nanopropulsion systems. Our hybrid frame uses the local Knudsen number based on the gradient of the flow properties (KnGLL) to distinct the continuum and molecular regions. This frame also uses the state-based coupling (Dirichlet-Dirichlet boundary-condition coupling) to transfer the information between the two regions. We simulate typical micro/nanopropulsion systems consisting of channels, catalyst or splitter plates, and convergent-divergent nozzles. According to the Kn GLL, we apply the NS solver to the... 

    Investigation on effect of centrifugal compressor volute cross-section shape on performance and flow field

    , Article Proceedings of the ASME Turbo Expo ; Volume 8, Issue PARTS A, B, AND C , 2012 , Pages 871-880 ; 9780791844748 (ISBN) Mojaddam, M ; Benisi, A. H ; Movahhedy, M. R ; Sharif University of Technology
    2012
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a centrifugal compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and flow parameters at the inlet and outlet of the centrifugal compressor. The three dimensional flow field model of the compressor was obtained numerically solving Navier- Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross... 

    Developing a FVBFE method on moving unstructured hybrid grid to simulate ice accretion

    , Article 43rd AIAA Thermophysics Conference 2012 ; 2012 ; 9781624101861 (ISBN) Darbandi, M ; Fard, M ; Naderi, A ; Schneider, G. E ; American Institute of Aeronautics and Astronautics (AIAA) ; Sharif University of Technology
    2012
    Abstract
    In this study, a moving mesh finite-volume-based finite-element (FVBFE) method is suitably extended to simulate the effect of supercooled liquid water droplet content on ice formation and growth on wing sections. The method benefits from the advantages of both finite-volume and finiteelement methods, which promote achieving a more accurate solution and a higher efficient procedure in ice accretion calculations. The method solves the time-dependent Navier-Stokes (NS) equations on unstructured hybrid grid distributions. In this method, the convection terms are approximated at the cell faces using a physical influence upwinding scheme. We also use linear spring approach to move the hybrid mesh....