Loading...
Search for: near-infrared
0.006 seconds
Total 33 records

    Morphological dependence of light backscattering from metallic back reflector films: Application in dye-sensitized solar cells

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 212, Issue 4 , January , 2015 , Pages 785-790 ; 18626300 (ISSN) Sharifi, N ; Ghazyani, N ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    Conventionally, a film of TiO2 particles of 300 nm size is employed in Dye-sensitized solar cells (DSCs) as the back reflector film to enhance the light harvesting. Perfect reflectance of silver in visible and near infrared motivates to investigate its potential as the material for the light back reflector film in DSCs. In this study, light back reflector films consisting of 300 nm-sized silver particles, as well as vacuum evaporated silver flat film, were fabricated and compared to 300 nm-sized rutile-type TiO2 particulate reflector film to study their optical aspects. Conventional TiO2 rutile-type particulate film demonstrates slightly lower performance... 

    Structural and optical properties of Fe and Zn substituted CuInS2 nanoparticles synthesized by a one-pot facile method

    , Article Journal of Materials Chemistry C ; Volume 3, Issue 4 , Nov , 2015 , Pages 889-898 ; 20507534 (ISSN) Vahidshad, Y ; Tahir, M. N ; Zad, A. I ; Mirkazemi, S. M ; Ghazemzadeh, R ; Tremel, W ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    We substitute indium present in the CuInS2 ternary compound by iron and zinc using a facile one-pot synthesis method. The quaternary compound of CuIn1-xMxS2 (M = Fe and Zn) was synthesized by dissolving CuCl, InCl3, FeCl3, Zn(ac)2 and SC(NH2)2 as precursors in 1-octadecene, oleylamine and oleic acid as non-coordinating, coordinating and capping agent solvents, respectively. Oleic acid, oleylamine and thiourea were used respectively as a hard Lewis base, borderline Lewis base (in comparison with oleic acid) and soft Lewis base to form appropriate complexes. The complex formation, structure, and... 

    Hyperthermia response of PEGylated magnetic graphene nanocomposites for heating applications and accelerate antibacterial activity using magnetic fluid hyperthermia

    , Article Applied Physics A: Materials Science and Processing ; Volume 126, Issue 4 , 2020 Hatamie, S ; Shih, P. J ; Soufi Zomorod, M ; Heravi, P ; Ahadian, M. M ; Hatami, N ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research work, graphene/cobalt nanocomposites are functionalized with polyethylene glycol (PEG) to be a platform for theranostics application and antibacterial activity. The non-covalent functionalization of PEG on the surfaces of nanocomposites improved their stability and diminished their cytotoxicity. The PEGylated nanocomposites are demonstrated to allow simultaneous administration of two cancer therapy methods such as magnetic fluids hyperthermia (MFH) which is carried out by converting magnetic energy into heat through ferromagnetic cobalt nanoparticles and heat generation through near-infrared optical absorption by the reduced graphene oxide. A concise simulation is carried... 

    Graphene/Cuo2nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 32 , 2020 , Pages 35813-35825 Jannesari, M ; Akhavan, O ; Madaah Hosseini, H. R ; Bakhshi, B ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    An oxygen nanoshuttle based on a reduced graphene oxide/copper peroxide (rGO/CuO2) nanocomposite has been presented to deliver in situ oxygen nanobubbles (O2 NBs) for combating bacterial infections. In the presence of rGO, the solid source of oxygen (i.e., CuO2) was decomposed (in response to environmental conditions such as pH and temperature) into O2 NBs in a more controllable and long-lasting trend (from 60 to 144 h). In a neutral buffer, the O2 NBs experienced growth and collapse evolutions, creating a dynamic micro-nanoenvironment around the nanocomposite. In addition to effective battling against methicillin-resistant Staphylococcus aureus bacteria, the O2 NBs demonstrated superior... 

    Synthesis of micelles based on chitosan functionalized with gold nanorods as a light sensitive drug delivery vehicle

    , Article International Journal of Biological Macromolecules ; Volume 149 , 2020 , Pages 809-818 Pourjavadi, A ; Bagherifard, M ; Doroudian, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This study aims to design photo-triggered micelles by using a natural base polymer. Chitosan was functionalized with thiourea, and in the next step, it was modified by grafting poly(L-lactide), poly(N-isopropylacrylamide), and poly(acrylamide) in determined ratio to form thermo-sensitive micelles. The sulfur content of chitosan@thiourea was measured about 2%. Grafting of polymers on chitosan was characterized by FT-IR and NMR techniques. The critical micellar concentration was measured by using photo luminescence spectroscopy. The size and surface morphology experiments revealed that average size of micelles is about 14 nm, and the length and width of GNRs are about 65 and 19 nm,... 

    Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes

    , Article Carbon ; Volume 194 , 2022 , Pages 162-175 ; 00086223 (ISSN) Amirjani, A ; Tsoulos, T. V ; Sajjadi, S. H ; Antonucci, A ; Wu, S. J ; Tagliabue, G ; Fatmehsari Haghshenas, D ; Boghossian, A. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Single-walled carbon nanotubes (SWCNTs) emit near-infrared (NIR) fluorescence that is ideal for optical sensing. However, the low quantum yields diminish the sensor's signal-to-noise ratio and limits the penetration depths for in vivo measurements. In this study, we perform a systematic investigation of the plasmonic effects of Ag and Au nanoparticles of various geometries to tune and even enhance the fluorescence intensity of single-stranded DNA-wrapped SWCNTs (ssDNA-SWCNTs). We observe a chirality-dependent NIR fluorescence enhancement that varies with both nanoparticle shape and material, with Au nanorods increasing (7, 5) and (7, 6) chirality emissions by 80% and 60% and Ag nanotriangles... 

    Characterization of a transition-edge bolometer made of YBCO thin films prepared by nonfluorine metal-organic deposition

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 6 , 2011 , Pages 3587-3591 ; 10518223 (ISSN) Hosseini, M ; Moftakharzadeh, A ; Kokabi, A ; Vesaghi, M. A ; Kinder, H ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    We present the results of a bolometric transition-edge sensor made of a high-Tc superconductor YBCO thin film prepared by fluorine-free metal-organic deposition. The structure of the films was characterized by X-ray diffraction and scanning electron microscopy, and the superconducting properties were determined by R-T measurements. The applicability of the resulting film as an infrared sensor is reported here. The optical response in the range of near infrared and the noise characteristics of the patterned bolometer are measured and analyzed. The dependence of device sensitivity on the bias current and modulation frequency is also investigated. As it is presented in this paper, the results... 

    Metal-nonmetal transition in the copper-carbon nanocomposite films

    , Article Physica B: Condensed Matter ; Volume 405, Issue 18 , Jan , 2010 , Pages 3949-3951 ; 09214526 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Panahandeh, M ; Heidari Saani, M ; Sharif University of Technology
    2010
    Abstract
    We prepared Cu nanoparticles in a-C:H thin films by co-deposition of RF-sputtering and RF-PECVD methods at room temperature. By increasing Cu content in these films a nonmetalmetal (NM) transition is observed. This transition is explainable by the power law of percolation theory. The critical metal content is obtained 56% and the critical exponent is obtained 1.6, which is larger than the exponent for 2 dimension systems and smaller than the one for 3 dimension systems. The electrical conductivity of dielectric samples was explained by tunneling. Activation tunneling energy that was obtained from temperature dependence of electrical resistivity correlates with near infrared absorption peak... 

    CdO/PSi/Si photo detector

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 997-1005 ; 14757435 (ISSN) Azarian, A ; Iraji zad, A ; Mahdavi, S. M ; Samadpoor, M ; Sharif University of Technology
    2009
    Abstract
    In spite of various works which were carried out on CdO and porous Si (PSi) separately, the interesting properties of CdO/PSi/Si system are not known well. In this work, we study the photoconductivity of deposited CdO layer on PSi/Si system. PS and CdO layers were prepared by electrochemical anodisation of p-type crystalline silicon and pulsed laser deposition (PLD) of cadmium oxide target. Then samples were annealed in air at 500°C to increase their optical transmissions to a value as large as 90% for wavelengths above 700 nm. The XRD study reveals that the annealed films are polycrystalline with grain size of about 25 nm. SEM micrograph of the CdO/PSi/Si system indicates that CdO layer has... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Gold nanorods for drug and gene delivery: An overview of recent advancements

    , Article Pharmaceutics ; Volume 14, Issue 3 , 2022 ; 19994923 (ISSN) Jahangiri Manesh, A ; Mousazadeh, M ; Taji, S ; Bahmani, A ; Zarepour, A ; Zarrabi, A ; Sharifi, E ; Azimzadeh, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both... 

    Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 126 , 2015 , Pages 313-321 ; 09277765 (ISSN) Akhavan, O ; Ghaderi, E ; Shirazian, S. A ; Sharif University of Technology
    Abstract
    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ~1. eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of... 

    Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 192 , 2020 Dehghan-Baniani, D ; Chen, Y ; Wang, D ; Bagheri, R ; Solouk, A ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling...