Loading...
Search for: neutrons
0.006 seconds
Total 138 records

    Discrete formulation for two-dimensional multigroup neutron diffusion equations

    , Article Annals of Nuclear Energy ; Volume 31, Issue 3 , 2004 , Pages 231-253 ; 03064549 (ISSN) Vosoughi, N ; Salehi, A. A ; Shahriari, M ; Sharif University of Technology
    2004
    Abstract
    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method... 

    Design and evaluation of a TNA explosive-detection system to screen carry-on luggage

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 248, Issue 3 , 2001 , Pages 695-697 ; 02365731 (ISSN) Tavakkoli Farsoni, A ; Mireshghi, S. A ; Sharif University of Technology
    2001
    Abstract
    Thermal neutron analysis (TNA) technology has been used for the non-destructive detection of explosives. The system uses a relatively weak 252Cf neutron source (1.03.107 n/s) and two 3″3×″ NaI(Tl) detectors. The presence of explosives is confirmed via detection of the 10.83 MeV prompt gamma-ray associated with nitrogen decay. The MCNP4A code was used to simulate the neutron and gamma transport through the system. The thermal neutron flux in the activation position was measured using gold and indium foils. The measured thermal neutron flux was lower, by not more than 9.5%, than that of simulation. In this report the results of the preliminary tests on the system are described  

    Obtaining multiaxial residual stress distributions from limited measurements

    , Article Materials Science and Engineering A ; Volume 303, Issue 1-2 , 2001 , Pages 281-291 ; 09215093 (ISSN) Smith, D. J ; Farrahi, G. H ; Zhu, W. X ; McMahon, C. A ; Sharif University of Technology
    2001
    Abstract
    Knowledge of the complete multiaxial residual stress distribution in engineering components is essential for assessing their integrity. Often, however, only limited measurements are made. Here, an analysis is presented for determining the multiaxial distribution from a limited set of measurements. These measurements are used with an assumed plastic strain distribution. Residual stress measurements were made on hot forged and shot blasted steel bars using X-ray and neutron diffraction techniques. The residual stresses were measured on the surface and at selected interior points of the specimens. The predicted multiaxial distributions were compared with experimental measurements obtained using... 

    Development of MCNPX Software for Simulation of the Neutron Energy Spectrum Using Time of Flight Method

    , M.Sc. Thesis Sharif University of Technology Mehrabi, Mohammad (Author) ; Hosseini, Abolfazl (Supervisor) ; Zangian, Mehdi (Co-Advisor)
    Abstract
    Since direct measurement of neutron energy, unlike measuring the energy of ionizing radiation, is difficult, and the use of indirect methods for detecting and measuring neutron energy with high resolution and acceptable efficiency are not possible, the neutron time of flight method is the only direct neutron energy spectroscopy method. This issue is considered and evaluated in two methods: direct and scattering neutron time of flight. For this purpose, we have considered the 241Am-9Be source. In this method, neutron velocity can be determined by measuring time. is the time for the neutron that travels at distance of . The next method is the dispersed neutron time of flight method, in... 

    Design and Construction of a Neutron Porosity Probe and Comparison of its Experimental Measurement with MCNP Simulation Results

    , M.Sc. Thesis Sharif University of Technology Valadi, Ahmad (Author) ; SohrabPour, Mostafa (Supervisor)
    Abstract
    Today the hydrocarbon materials rank in the list of requirements of the modern societies. The increased growth of the human population, their industrial economic activities, transportation etc. requires sufficient supplies of our resources. Therefore, the hydrocarbon resources need to be discovered and evaluated accurately. There are different methods that are used to measure underground hydrocarbon resources such as well logging. In this method, a measuring device is lowered into a well to evaluate several parameter of the surrounding soil. Nuclear well logging is a sub category of well logging that uses nuclear rays to do this measurement. This method has different types of sondes which... 

    Neutron Noise Calculation Using High order Nodal Expansion Method

    , M.Sc. Thesis Sharif University of Technology Kolali, Ali (Author) ; Vosoughi, Naser (Supervisor)
    Abstract
    This study consists of two parts: steady state calculations and neutron noise calculations in the frequency domain for two rectangular and hexagonal geometries. In the steady state calculation, the neutron diffusion and its adjoint equations are approximated by two-dimensional coordinates in two-group energy and are solved using the average current nodal expansion method. Then, by considering the node size in the dimensions of a fuel assembly, different orders of flux expansion are investigated. For verification purposes, the calculations have been performed by power iteration method for two test problems of BIBLIS-2D and IAEA-2D. For rectangular geometry with increasing flux expansion order... 

    Online Reconstruction of Neutron Flux Distribution using BNPP Operating Data

    , M.Sc. Thesis Sharif University of Technology Ramezani, Iman (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Raji, Mohammad Hossein (Co-Advisor)
    Abstract
    The safety and optimal performance of nuclear reactors require online monitoring in the core. One of the most important requirements of core monitoring is the knowledge at all time of the neutron flux distribution in the core. The present M.Sc thesis describes a method which avoids the solution of time dependent neutron diffusion equation and uses online readings of the fixed in-core neutron detectors to reconstruct the three-dimensional (3D) neutron flux distribution. The essential idea of nodal synthesis method is separation of time and space dependence of the neutron flux distribution. The time dependent section of the flux distribution is determined by neutron detector readings and space... 

    An alternative stochastic formulation for the point reactor

    , Article Annals of Nuclear Energy ; Vol. 63, issue , 2014 , pp. 691-695 ; ISSN: 03064549 Ayyoubzadeh, S. M ; Vosoughi, N ; Sharif University of Technology
    Abstract
    The stochastic behavior of a point reactor is modeled with a system of Ito stochastic differential equations. This new approach does not require computing the square root of a matrix which is a great computational advantage. Moreover, the derivation procedure clearly demonstrates the mathematical approximations involved in the final formulation. Three numerical benchmarks show the accuracy of this model in predicting the mean and variance of the neutron and precursor population in a point reactor  

    Solution of diffusion equation in deformable spheroids

    , Article Annals of Nuclear Energy ; Volume 38, Issue 5 , 2011 , Pages 982-988 ; 03064549 (ISSN) Ayyoubzadeh, S. M ; Safari, M. J ; Vosoughi, N ; Sharif University of Technology
    2011
    Abstract
    The time-dependent diffusion of neutrons in a spheroid as a function of the focal distance has been studied. The solution is based on an orthogonal basis and an extrapolation distanced related boundary condition for the spheroidal geometry. It has been shown that spheres and disks are two limiting cases for the spheroids, for which there is a smooth transition for the systems properties between these two limits. Furthermore, it is demonstrated that a slight deformation from a sphere does not affect the fundamental mode properties, to the first order. The calculations for both multiplying and non-multiplying media have been undertaken, showing good agreement with direct Monte Carlo... 

    A new approach for solution of time dependent neutron transport equation based on nodal discretization using MCNPX code with feedback

    , Article Annals of Nuclear Energy ; Volume 133 , 2019 , Pages 519-526 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper proposes a new method for solving the time-dependent neutron transport equation based on nodal discretization using the MCNPX code. Most valid nodal codes are based on the diffusion theory with differences in approximating the leakage term until now. However, the Monte Carlo (MC) method is able to estimate transport parameters without approximations usual in diffusion method. Therefore, improving the nodal approach via the MC techniques can substantially reduce the errors caused by diffusion approximations. In the proposed method, the reactor core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates and leakage ratio are... 

    A new Monte Carlo approach for solution of the time dependent neutron transport equation based on nodal discretization to simulate the xenon oscillation with feedback

    , Article Annals of Nuclear Energy ; Volume 141 , 2020 Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper a probabilistic methodology based on core nodalization is proposed to estimate the core power in the presence of xenon oscillation. A time-dependent Monte Carlo neutron transport code named MCSP-NOD is developed for dynamic analysis in arbitrary 3D geometries to simulate xenon oscillations as well as sub-critical condition with feedbacks. The new code is based on the approach adopted in MCNP-NOD which was previously introduced as a tool for core transient analysis using the MCNPX platform. As before, the core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates, leakage ratio are estimated using the MC techniques.... 

    Development of SD-HACNEM neutron noise simulator based on high order nodal expansion method for rectangular geometry

    , Article Annals of Nuclear Energy ; Volume 162 , 2021 ; 03064549 (ISSN) Kolali, A ; Vosoughi, J ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, the SD-HACNEM (Sharif Dynamic - High order Average Current Nodal Expansion Method) neutron noise simulator in two energy groups using a second-order flux expansion method for two-dimensional rectangular X Y-geometry has been developed. In the first step, the calculations were performed for the steady state and results of ACNEM (Average Current Nodal Expansion Method) and HACNEM (High order Average Current Nodal Expansion Method) were examined and compared. To solve the problem, the power iteration algorithm has been used to calculate the distribution of neutron flux and neutron multiplication factor by considering the coarse-mesh (each fuel assembly one node). To validate the... 

    Design and Construction of PE/W/LiF Composites as the Shield of Neutron-gamma in Mixed Fields

    , M.Sc. Thesis Sharif University of Technology Mirazimi, Samaneh (Author) ; Vossoughi, Nasser (Supervisor) ; Asadi, Skandar (Co-Advisor)
    Abstract
    In a nuclear reaction, particles such as gamma, neutron, alpha beta, etc. May be emitted. Environment and humans could be damaged severely if these radiations are not properly shielded. One of the main goals of this project is manufacture proper shields for neutron and gamma attenuation and absorption in mixed fields, benefiting the particular properties of composites. In preliminary stage of this project, with comprehensive studies, primary materials were selected. These materials are Tungsten, Polyethylene and Lithium Fluoride selected as Gamma absorber, thermalizer and thermalized neutron absorber respectively. In the next step, weight fractions of each material and thicknesses of... 

    Neutronic and Thermal-Hydraulic Coupling in time domain and Feasibility Study of its Application in Accident Prediction

    , M.Sc. Thesis Sharif University of Technology Abbasi Fashami, Sajjad (Author) ; Vosoughi, Naser (Supervisor)
    Abstract
    Analysis of neutronic and thermal-hydraulics fluctuations has various applications in calculation or measurement of the core dynamical parameters (temperature reactivity coefficients) furthermore it is applicable in thermal-hydraulics surveillance and diagnostics. Experience of the Fukushima Dai-ichi plant and the lessons learned from the European stress tests, demonstrated that alternative and various tools and methods are needed for the reactor's condition identification. In this paper the feasibility of development of an alternative accident monitoring via eminent coupling of neutron and thermal-hydraulics noise is proposed. and it is programming a simple simulator for calculating... 

    Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application

    , Article Radiation Physics and Chemistry ; Volume 141 , 2017 , Pages 223-228 ; 0969806X (ISSN) Kiani, M. A ; Ahmadi, S. J ; Outokesh, M ; Adeli, R ; Mohammadi, A ; Sharif University of Technology
    Abstract
    In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower... 

    CLB-based detection and correction of bit-flip faults in SRAM-based FPGAs

    , Article 2007 IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans, LA, 27 May 2007 through 30 May 2007 ; 2007 , Pages 3696-3699 ; 02714310 (ISSN) Zarandi, H. R ; Miremadi, S. G ; Argyrides, C ; Pradhan, D. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2007
    Abstract
    This paper presents a bit-flip tolerance in SRAM-based FPGAs which suffers from high energy particles, alpha and neutrons in the atmosphere. For each of protections, the applicability, efficiency and implementation issues are discussed. Moreover, the area, the power and the protection capability of the methods are mentioned and compared with previous work Based on the results of experiments and their analysis, one method is selected as best one. The selected method is much better than previous work e.g., duplication with comparison, triple modular redundancy which impose two and three area and power overheads, respectively. © 2007 IEEE  

    Kinetic parameters evaluation of PWRs using static cell and core calculation codes

    , Article Annals of Nuclear Energy ; Volume 41 , 2012 , Pages 110-114 ; 03064549 (ISSN) Jahanbin, A ; Malmir, H ; Sharif University of Technology
    Abstract
    In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C# computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for... 

    Monte Carlo simulation of Feynman-α and Rossi-α techniques for calculation of kinetic parameters of Tehran research reactor

    , Article Annals of Nuclear Energy ; Volume 38, Issue 10 , 2011 , Pages 2140-2145 ; 03064549 (ISSN) Hosseini, S. A ; Vosoughi, N ; Hosseini, M ; Sharif University of Technology
    Abstract
    Noise analysis techniques including Feynman-α (variance-to-mean) and Rossi-α (correlation) have been simulated by MCNP computer code to calculate the prompt neutron decay constant (α0), effective delayed neutron fraction (βeff) and neutron generation time (Λ) in a subcritical condition for the first operating core configuration of Tehran Research Reactor (TRR). The reactor core is considered to be in zero power (reactor power is less than 1 W) in the entire simulation process. The effect of some key parameters such as detector efficiency, detector position and its dead time on the results of simulation has been discussed as well. The results of proposed method in the current study are... 

    Localization of a noise source in VVER-1000 reactor core using neutron noise analysis methods

    , Article International Conference on Nuclear Engineering, Proceedings, ICONE, 17 May 2010 through 21 May 2010 ; Volume 2 , May , 2010 ; 9780791849309 (ISBN) Malmir, H ; Vosoughi, N ; Zahedinejad, E ; Nuclear Engineering Division ; Sharif University of Technology
    2010
    Abstract
    In this paper, localization of a noise source from limited neutron detectors sparsely distributed throughout the core of a typical VVER-1000 reactor is investigated. For this purpose, developing a 2-D neutron noise simulator for hexagonal geometries based on the 2-group diffusion approximation, the reactor dynamic transfer function is calculated. The boxscheme finite difference method is first developed for hexagonal geometries, to be used for spatial discretisation of both 2-D 2-group static and noise diffusion equations. The dynamic state is assumed in the frequency domain which leads to discarding of the time disrcetisation. The developed 2-D 2- group neutron noise simulator calculates... 

    Development of a 2-D 2-group neutron noise simulator for hexagonal geometries

    , Article Annals of Nuclear Energy ; Volume 37, Issue 8 , 2010 , Pages 1089-1100 ; 03064549 (ISSN) Malmir, H ; Vosoughi, N ; Zahedinejad, E ; Sharif University of Technology
    Abstract
    In this paper, the development of a neutron noise simulator for hexagonal-structured reactor cores using both the forward and the adjoint methods is reported. The spatial discretisation of both 2-D 2-group static and dynamic equations is based on a developed box-scheme finite difference method for hexagonal mesh boxes. Using the power iteration method for the static calculations, the 2-group neutron flux and its adjoint with the corresponding eigenvalues are obtained by the developed static simulator. The results are then benchmarked against the well-known CITATION computer code. The dynamic calculations are performed in the frequency domain which leads to discarding of the time...