Loading...
Search for: newtonian
0.006 seconds
Total 130 records

    Electroosmotic flow of viscoelastic fluids through a slit microchannel with a step change in wall temperature

    , Article Journal of Heat Transfer ; Volume 135, Issue 2 , 2013 ; 00221481 (ISSN) Sadeghi, A ; Veisi, H ; Saidi, M. H ; Asghar Mozafari, A ; Sharif University of Technology
    2013
    Abstract
    Thermally developing electroosmotically generated flow of two viscoelastic fluids, namely the PTT and FENE-P models, through a slit microchannel is considered. Both the viscous dissipation and Joule heating effects are taken into account and a step change in wall temperature is considered to represent physically conceivable thermal entrance conditions. Expressions for the dimensionless temperature and Nusselt number in the form of infinite series are presented. In general, the resultant eigenvalue problem is solved numerically; nevertheless, an analytical solution is presented for the regions close to the entrance. A parametric study reveals that increasing amounts of the Peclet number... 

    Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 414 , 2012 , Pages 440-456 ; 09277757 (ISSN) Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Electroosmosis is the predominant mechanism for flow generation in lab-on-chip devices. Since most biofluids encountered in these devices are considered to be non-Newtonian, it is vital to study the flow characteristics of common non-Newtonian models under electroosmotic body force. In this paper, the hydrodynamically fully developed electroosmotic flow of power-law fluids in rectangular microchannels is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A thoroughgoing parametric study reveals that the Poiseuille number is an increasing function of the channel aspect ratio, the zeta potential, the... 

    Mold filling simulation in the injection molding process with openFOAM software for non-isothermal newtonian fluid

    , Article Proceedings of the 2nd IASTED Asian Conference on Modelling, Identification, and Control, AsiaMIC 2012 ; 2012 , Pages 291-296 ; 9780889869110 (ISBN) Fazelpour, F ; Vafaeipour, M ; Etemadi, H ; Dabbaghian, A ; Bardestani, R ; Dehghan, M ; Sharif University of Technology
    2012
    Abstract
    Injection molding is one of the most important manufacturing processes for mass production of complex plastic parts. In this study, mold filling is simulated by using the OpenFOAM software for Non- isothermal Newtonian fluid. The OpenFOAM is an open source software that is used in Computational Fluid Dynamics (CFD) tools. The studied mold shape has a rectangular structure with a gate for Newtonian fluid injection. The simulation carried out at non-isothermal conditions and two-dimensional flow is considered. The velocity, shear stress and temperature changes in different parts of the mold are critically studied. We show that vortex formation plays an important role on changes of shear stress... 

    CFD-DEM Model for Simulation of Non-spherical Particles in Hole Cleaning Process

    , Article Particulate Science and Technology ; Volume 33, Issue 5 , 2015 , Pages 472-481 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    During the well drilling process, particles are produced in different shapes. The shape of particles can influence the characteristics of particles transport process. The aim of this work is to analyze the effects of particle shape on the transportation mechanism. For this purpose, a three-dimensional model is prepared for simulation of particle transportation with spherical and non-spherical shapes, during deviated well drilling. The motion of particles and the non-Newtonian fluid flow are simulated via discrete element method and CFD, respectively. The two-way coupling scheme is used to incorporate the effects of fluid-particle interactions. Three different samples of non-spherical shapes... 

    Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 9 , 2009 , Pages 2456-2467 ; 1738494X (ISSN) Javadzadegan, A ; Esmaeili, M ; Majidi, S ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    2009
    Abstract
    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A msathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier-stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the... 

    Parallel Simulation of Generalized Newtonian Flows Using Smoothed Particle Hydrodynamics

    , M.Sc. Thesis Sharif University of Technology Roustaei, Ali (Author) ; Taghizade Manzari, Mehrdad (Supervisor)
    Abstract
    Smoothed Particle Hydrodynamics(SPH) is the oldest Lagrangian method for solving fluid equations. Fluid is approximated with particles that represent a control mass and carry physical properties su as mass, temprature and . . . Simpler formulation relative to other methods like finite volume and finite element, no need for surface traing and ease of adding new physics are benefits of this method. In this method it is necessary to find neighboring particles that are closer than smoothing lenght (h) for ea particle. is is a time consuming operation causing SPH to be a computationaly expensive method. First simulation of Power-law fluids is considered. It has been observed that using of... 

    A Model for Temperature Distribution Prediction of a Non-Newtonian Fluid in an Agitated Vessel by CFD Method

    , M.Sc. Thesis Sharif University of Technology Oliaei, Elahe (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    In this thesis heat transfer coefficient and temperature distribution of two Non-Newtonian and a Newtonian fluids in stirred vessel are investigated using Computational Fluid Dynamic (CFD). This vessel is agitated with new impeller called MAXBLEND. Non-Newtonian fluids are aqueous solutions of carboxymethyl cellulose 1.5%w/w and xanthan gum 3% w/w and Newtonian fluid is glycerin. This vessel is simulated in laminar regime with Reynolds number less than 14. The results of simulation are compared with correlation proposed by Kawase et al. Furthermore as a new research for this impeller, the effects of vessel diameter and position of impeller in the vessel on heat transfer coefficient are... 

    Drag Reduction Using Geometrically Structured Surfaces for Non-newtonian Multi-phase Fluids

    , M.Sc. Thesis Sharif University of Technology Javaherchian, Javaneh (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    With the advancement of the industry, microscale devices use due to its unique characteristics. On the other hand, it is essential to find ways to reduce drag inside microchannels because of The importance of energy. One of the methods is to optimize the contact surface using structured geometric surfaces. These hydrophobic surfaces reduce drag by trapping the air in roughness and creating a two-phase flow. The purpose of this project is to reduce the drag within the microchannel using structured geometric surfaces for non-Newtonian and multiphase flows. In most previous studies, with simplification, Newtonian and two-phase flows have been investigated. While most industrial fluids show... 

    Experimental and Theoretical Investigation of Ascending Accelerated Motion of Single Bubble in Quiescent Newtonian and Non-newtonian Liquids

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Mona (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    The gas-liquid interaction is one of the most important and common phenomenons in chemical, biochemical and mineral industries which is generally observed as liquid in a gas stream (droplet) or gas in a liquid stream (bubble). Although bubbles produced in the industrial applications are in the form of a group of bubbles, understanding the hydrodynamics of a single bubble in a quiescent liquid provides a starting point for studying bubble groups. It should be noted that changes in the velocity and drag coefficient of the bubbles in various fluids are essential parameters for designing gas-liquid systems. In the present research, in order to examine the effect of system parameters and... 

    Simulation of Non-newtonian Flow of Drilling Fluid Around the Drill String with the Olga Software

    , M.Sc. Thesis Sharif University of Technology Sadri, Avazdordi (Author) ; Jamshidi, Saeed (Supervisor)
    Abstract
    Because of the importance of simulations in the oil industry, there are different software applications designed for this purpose. The purpose of the simulation in the oil industry is to reduce operational errors during the operation and to achieve the most ideal mode of operation. However, in the simulation of multiphase fluid flow because of the special circumstance, simulation plays an important role in the oil industry. OLGA multiphase flow simulation software is a strong simulation software for water, oil, Gas wells, wellhead facilities, refineries and pipelines and it is capable of simulating pipelines under various dynamic conditions. Simulation of drilling hydraulic parameters is... 

    Experimental Study of a Single Bubble Formation and Its Deformation in Shear-thinning Fluids

    , M.Sc. Thesis Sharif University of Technology Esfidani, Mohammad Taghi (Author) ; Afshin, Hossein (Supervisor) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Bubble formation and bubble rising are widely used in many industrial processes such as bubble columns, extraction, fermentation, foaming and polymerization. Although many of these processes are faced with a series of bubbles, this study may help us better understand the hydrodynamics of single bubble formation and bubble rising and provides a deep insight into the modeling of a series of bubbles. Bubble velocity and drag coefficient in various fluids are the major parameters for designing the liquid-gas systems. These parameters are a function of the bubble size. In this study, single bubble formation is theoretically modelled in order to predict the size of the bubble at the moment of... 

    Numerical Investigation of Instabilities of Flow in Micro-fluid

    , M.Sc. Thesis Sharif University of Technology Yazdi, Hossein (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    This research concerns investigating the behavior of two-phase flow in the inlet and outlet of the microchannels.Both the droplet based and the continuous microfluidics are considered. For the continuous system whenthe minor fluid enters the microchannel, due to ratio of viscosity of two fluids, viscous folding occurs.Viscous folding phenomena is similar to the buckling phenomena in solids.This means that the viscosity of the fluid, which is applied to two sides of the fluid layer, causes folding the fluid layer and changing the shape of it. For the study we employ a VOF based numerical routine. In order to verify numerical results, the grid and the time step independenciesare checked. In... 

    Influence of Geometrical Parameters on Hemodynamics of Blood Flow in Coronary Artery Bypass Graft by FSI Numerical Method

    , M.Sc. Thesis Sharif University of Technology Saffari, Ali (Author) ; Halali, Mohammad (Supervisor) ; Hossein Ahmadi, Zargham (Supervisor)
    Abstract
    In this study, the simulation of blood flow through a stenosed coronary artery and a bypass graft are discussed using fluid-structure interaction numerical method. Effects of the geometrical parameters of CABG surgery on hemodynamics have been studied. Investigated hemodynamic variables include shear stress on the vessel wall, the velocity profile in high-risk areas and the pathlines. Lower than 0.5 Pa shear stress on intimal layer of arteries causes the formation of plaque on the wall. Angle of 30 degrees and diameter ratio of bypass to host artery of 1:1 are proposed as the optimum geometry. The distance of the anastomosis from the site of occlusion has no effect on surgery. Also,... 

    Study on Viscoelastic Fluid Flow in Channels with Dead End and Valuation in Micro Model

    , Ph.D. Dissertation Sharif University of Technology Kamyabi, Ata Allah (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    It is about half century passed from the invention and application of the polymer flooding. Although there are successful reports from the using polymer flooding, but there are problems that in some cases this process fails. For more insight on the problems and in order to improve
    the efficiency of this process the conceptual understanding of the process is required. More conceptual understanding from this process, requires investigation in pore scale. In the presenting investigation, the flow of Newtonian and non-Newtonian fluids in the single phase and two phase form and in pore scale are simulated using finite volume method. Because, the finite volume method is used in very... 

    Fabrication of Superhydrophobic Surfaces to Decrease Pressure Drop through the Galvanized Pipe and Study about Feasibility of the Fabricated Surface to Use for Non-newtonian Fluid

    , M.Sc. Thesis Sharif University of Technology Pakzad, Hossein (Author) ; Mousavi, Ali (Supervisor) ; Nouri boroojerdi, Ali (Supervisor)
    Abstract
    Nowdays, one of the most important concerns for scientists is increasing CO2 emmisions and global warming. To overcome this problem, a large number of studies have been carried out to improve energy system performance and reducing the overall energy consumption. One solution to this problem is using the superhydrophobic surfaces with contact angle larger than 150°.In this study, we try to reduce the pressure drop through the galvanized pipes. So, by reducing the pressure drop, power required for pumps can be reduced. To this end, two different coatings by silica nano-particles which were modified with first hydrophobic agent are used. In first coating which is named as PS coating, stearic... 

    Dynamics and Heat transfer of Two-phase Non-Newtonian Fluids in Superhydrophobic Channels

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Arghavan (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    When the fluid passes through the microchannel, some energy is lost due to drag force and pressure drop. One of the methods used in the last few decades to optimize energy consumption is creating superhydrophobic surfaces in microchannels. These surfaces, with their features such as increasing the contact angle and reducing the contact angle hysteresis, can reduce energy loss, which is due to the presence of unevenness on the surface, and by trapping air and creating a two-phase flow, they reduce the drag force. On the other hand, the air trapped inside these irregularities will also affect the heat transfer of the passing fluid in the microchannel, which by creating resistance in the... 

    Mechanical Properties of Lubricants in Nano Powders Compaction Process Using Molecular Dynamics and Continuum Mechanics Methods

    , M.Sc. Thesis Sharif University of Technology Palahang, Pezhman (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The primary objective of this study entails the examination of the impact of lubricants intended for implementation in the compaction process of nano-powders, intending to mitigate friction at the nano scale during compaction. Molecular dynamics modeling is employed to scrutinize this phenomenon and derive the friction parameters within the framework of equations derived from continuum mechanics, based on data acquired from the nanoscale investigations. The manufacturing procedure of metallic components from metal powder compaction necessitates the application of immense pressures, thereby engendering notable friction between the powder particles and the confines of the mold. Consequently,... 

    Continuum model of actin-myosin flow

    , Article 2013 20th Iranian Conference on Biomedical Engineering, ICBME 2013 ; December , 2013 , Pages 98-102 Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    The front part of a cell is divided to two regions called lamellum and lamellipodium (lamellipodial). This part plays an essential role for cell migration. Indeed, there are many protein filaments called actin in lamellum and lamellipodium, which induce the cell motion with polymerization in the leading edge of the cell. The actin filaments adhere to the extracellular matrix (ECM) by means of focal adhesions and they have contact by myosin motor proteins. The myosin motor proteins cause actin retrograde and anterograde flow exerted contractile stress on them. The focal adhesions exert frictional stress on the actin filaments. In this work, we developed a two-dimensional continuum model of... 

    Numerical investigation of blood flow. Part I: In microvessel bifurcations

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 13, Issue 8 , 2008 , Pages 1615-1626 ; 10075704 (ISSN) Jafari, A ; Mousavi, S. M ; Kolari, P ; Sharif University of Technology
    2008
    Abstract
    In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation... 

    An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows

    , Article International Journal of Non-Linear Mechanics ; Volume 42, Issue 10 , 2007 , Pages 1210-1223 ; 00207462 (ISSN) Rafiee, A ; Manzari, M. T ; Hosseini, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, an incompressible smoothed particle hydrodynamics (SPH) method is presented to solve unsteady free-surface flows. Both Newtonian and viscoelastic fluids are considered. In the case of viscoelastic fluids, both the Maxwell and Oldroyd-B models are investigated. The proposed SPH method uses a Poisson pressure equation to satisfy the incompressibility constraints. The solution algorithm is an explicit predictor-corrector scheme and employs an adaptive smoothing length based on density variations. To alleviate the numerical difficulties encountered when fluid is highly stretched, an artificial stress term is incorporated into the momentum equation which reduces the risk of...