Loading...
Search for: newtonians
0.006 seconds
Total 130 records

    Hamiltonian formalism for dynamics of particles in MOG

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 514, Issue 3 , 2022 , Pages 4601-4605 ; 00358711 (ISSN) Rahvar, S ; Sharif University of Technology
    Oxford University Press  2022
    Abstract
    MOG as a modified gravity theory is designed to be replaced with dark matter. In this theory, in addition to the metric tensor, a massive vector is a gravity field where each particle has a charge proportional to the inertial mass and couples to the vector field through the four-velocity of a particle. In this work, we present the Hamiltonian formalism for the dynamics of particles in this theory. The advantage of Hamiltonian formalism is a better understanding and analysing the dynamics of massive and massless particles. The massive particles deviate from the geodesics of space-time and photons follow the geodesics. We also study the dynamics of particles in the Newtonian and post-Newtonian... 

    Numerical Fluid–Structure Interaction and non-Newtonian Simulation of Blood Flow in a Compliant Carotid Bifurcation

    , M.Sc. Thesis Sharif University of Technology Toloui, Mostafa (Author) ; Firoozabadi, Bahar (Supervisor) ; Saidi, Mohammad Saeid (Co-Advisor)
    Abstract
    Researchers have done a lot of studies about the use of CFS in blood flow modeling in order to improve the supplementary devices or find mechanical factors which cause artery to be diseased. Blood is a complex rheological fluid, blood flow is a pulastile flow, and blood flow field interacts with the deformable vessel wall. Thus, blood flow modeling like other biological phenomena has its own complexities such as anisotropy, vsicoelasticity, and nonlinearity in stress-strain relationship of vessel wall. To explore the role of hemodynamics in the initiation and progression of stenosis in carotid artery bifurcation, a 3D Computational Fluid Dynamics (CFD) technique is applied. The effect of... 

    A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows

    , Article International Journal of Non-Linear Mechanics ; Volume 47, Issue 6 , 2012 , Pages 626-638 ; 00207462 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of... 

    Heat transfer characteristics of mixed electroosmotic and pressure driven flow of power-law fluids in a slit microchannel

    , Article International Journal of Thermal Sciences ; Volume 53 , 2012 , Pages 71-79 ; 12900729 (ISSN) Babaie, A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    2012
    Abstract
    Thermal transport characteristics of electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit microchannel are studied in this paper. Considering a fully developed flow with a constant wall heat flux as the boundary condition, the governing equations are numerically solved by means of the finite difference method. A complete parametric study is done in order to investigate the effects of different flow parameters on the thermal behaviors of the flow. The results show that the non-Newtonian characteristic of the fluid can influence the thermal behaviors of the flow by affecting the rate of heat convection and viscous dissipation; however, its influence... 

    Heat transfer due to electroosmotic flow of viscoelastic fluids in a slit microchannel

    , Article International Journal of Heat and Mass Transfer ; Volume 54, Issue 17-18 , August , 2011 , Pages 4069-4077 ; 00179310 (ISSN) Sadeghi, A ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2011
    Abstract
    The bio-microfluidic systems are usually encountered with non-Newtonian behaviors of working fluids. The rheological behavior of some bio-fluids can be described by differential viscoelastic constitutive equations that are related to PTT and FENE-P models. In the present work, thermal transport characteristics of the steady fully developed electroosmotic flow of these fluids in a slit microchannel with constant wall heat fluxes have been investigated. The Debye-Huckel linearization is adopted and the effects of viscous dissipation and Joule heating are taken into account. Analytical solutions are obtained for the transverse distributions of velocity and temperature and finally for Nusselt... 

    Shear-rate-dependent rheology effects on mass transport and surface reactions in biomicrofluidic devices

    , Article AIChE Journal ; Volume 61, Issue 6 , 2015 , Pages 1912-1924 ; 00011541 (ISSN) Sadeghi, A ; Amini, Y ; Saidi, M. H ; Yavari, H ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    Consideration is given to shear-rate-dependent rheology effects on mass transport in a heterogeneous microreactor of rectangular cross section, utilizing both numerical and analytical approaches. The carrier liquid obeys the power-law viscosity model and is actuated primarily by an electrokinetic pumping mechanism. It is discovered that, considering the shear-thinning biofluids to be Newtonian fluids gives rise to an overestimation of the saturation time. The degree of overestimation is higher in the presence of large Damkohler numbers and electric double layer thicknesses. It is also increased by the application of a favorable pressure gradient, whereas the opposite is true when an opposed... 

    Synthesis and analysis of the properties of ferro-fluids

    , Article ICONN 2010 - Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology, 22 February 2010 through 26 February 2010, Sydney, NSW ; 2010 , Pages 91-93 ; 9781424452620 (ISBN) Maleki Jirsaraei, N ; Ghane Motlagh, B ; Ghane Golmohamadi, F ; Ghane Motlagh, R ; Rouhani, S ; Sharif University of Technology
    2010
    Abstract
    We report the rheological properties of ferro-fluid (FF) containing iron oxide nano-particles. At first, a FF was synthesized by using chemical co-precipitaton[1]. The microstructure study using SEM revealed that the FF contained nano-particles with the mean particle size of 35nm. The XRD study revealed that we have well crystallized structures of magnetite; they appeared to be approximately single crystalline structures. The rheological results proved that the FF has non Newtonian behavior, it is a shear thinning fluid in all magnetic fields, Moreover, the magnetic field increases the viscosity in a definite shear rate due to the nano-particles agglomerations and formation of chain-like... 

    The pulsatile flow of Oldroyd-B fluid in a multi-stenosis artery with a time-dependent wall

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 4 , 2010 , Pages 915-923 ; 09544062 (ISSN) Javadzadegan, A ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    Abstract
    In this study, the fundamental problem of unsteady blood flow in a tube with multi-stenosis is studied. An appropriate shape of the time-dependent multi-stenosis which is overlapping in the realm of formation of arterial narrowing is constructed mathematically. Blood is considered as a viscoelastic fluid characterized by the Oldroyd-B model. For the numerical solution of the problem, which is described by a coupled, non-linear system of partial differential equations (PDEs), with appropriate boundary conditions, the finite difference scheme is adopted. The solution is obtained by the development of an efficient numerical methodology based on the predictor-corrector method. The effects of... 

    Oscillatory response of charged droplets in hydrogels

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 234 , 2016 , Pages 215-235 ; 03770257 (ISSN) Mohammadi, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Characterization of droplet-hydrogel interfaces is of crucial importance to engineer droplet-hydrogel composites for a variety of applications. In order to develop electrokinetic diagnostic tools for probing droplet-hydrogel interfaces, the displacement of a charged droplet embedded in a polyelectrolyte hydrogel exposed to an oscillating electric field is determined theoretically. The polyelectrolyte hydrogel is modeled as an incompressible, charged, porous, and elastic solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no charges within the droplet. The droplet-hydrogel interface is modeled as a surface with the thickness of zero... 

    Fluid–structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 74 , 2017 , Pages 72-83 ; 17516161 (ISSN) Shamloo, A ; Nejad, M. A ; Saeedi, M ; Sharif University of Technology
    Abstract
    In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifurcation point of the anterior cerebral artery (ACA) and anterior communicating artery (ACoA) is modeled in a three-dimensional manner. Three cases are chosen in the current study: an untreated thin wall (first case), untreated thick wall (second case), and a treated aneurysm (third case). The effect of increasing the aneurysm wall thickness on the deformation and stress distribution of the walls are studied. The obtained results showed that in the second case, a reduction in the... 

    Numerical Investigation on Oil/Water Separation through Coalescence in Membrane Pores

    , M.Sc. Thesis Sharif University of Technology Rashidi, Hojat (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Oil/water separation is an important field, not only for scientific research, but also for environmental, economic, and social issues. On the one hand, oily wastewater, resulting from industries such as steel, aluminum, food, textile, leather, petrochemical and metal finishing, has become the most common pollutant all over the world. On the other hand, frequent oil spill accidents are of great concern since the discharge can lead not only to serious environmental pollution, but also a great loss of energy.
    In crude oil removing water is necessary due to reducing corrosion, increasing thermal values of fuels obtained from crude oil, preventing catalists from destruction by water and... 

    Simulation of Blood Flow in Deformable Arteries using SPH

    , M.Sc. Thesis Sharif University of Technology Ghods, Sina (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Since coronary artery diseases are increasing every day, simulation of blood flow in blood vessels and their stenosis is one of the most important topics nowadays. Many efforts have been made to achieve numerical simulations using different methods such as Finite-Difference. In this thesis, an SPH method is used to simulate pulsatile blood flow in arteries. The weakly compressible algorithm consists of two steps of prediction and correction. In the prediction step, the velocity field is integrated forward in time without enforcing incompressibility. The correction step consists of enforcing incompressibility by solving the pressure Poisson equation which creates a trade-off between the... 

    Experimental Investigation on the Accelerated Motion of Newtonian and Non-Newtonian Liquid Drops

    , M.Sc. Thesis Sharif University of Technology Aminzadeh, Milad (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Motion of liquid drops into another fluid is of central importance in a variety of most commonly used industries. Vast applications of emulsions in food and drug industries as well as using of drops in liquid-liquid extraction processes and direct contact heat exchangers are examples in which dynamics of motion of drops play a significant role in operation and efficiency.
    In present study, we consider the accelerated motion of Newtonian and non-Newtonian liquid drops experimentally. In order to find the effect of bulk fluid on the motion of drops, air and water are used as bulk fluid. The experiments have been done on Water, Ethanol, Ethyl acetate, n-Hexane and Toluene as Newtonian and... 

    Simulation of Blood Flow Subjected to Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Aalizadeh, Farhad (Author) ; Moosavi, Ali (Supervisor) ; Shafie, Mohammad Behshad (Supervisor)
    Abstract
    Considering the fact that there is a blood flow inside the vessels it is possible that blood flow is always associated with fouling and this may decrease the blood flow when a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets (small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.” We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The... 

    Experimental Study of Droplet Formation in Surfactant Solution

    , M.Sc. Thesis Sharif University of Technology Niknezhad, Mahdi (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Advisor)
    Abstract
    Surfactants are materials that reduces surface tension, and this property has provided a wide range of applications for them. Most of the surfactants reduce surface tensions at the interface of two fluids. The pharmaceutical and food industries, detergents, cosmetics, agricultural pesticides, dye production and oil extraction are among these applications.In this study, the formation of droplets in the presence of three types of surfactants SDS, CTAB and Tween 20 has been investigated. To evaluate the droplet behavior in the presence of specific surfactants, various parameters such as formation time of the droplet, the diameter and length of the droplet formed, the diameter and length of the... 

    Design and Development of Non-Newtonian Droplet-based Logic Microfluidics Using Passive Method

    , Ph.D. Dissertation Sharif University of Technology Asghari, Elmira (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Droplet-based microfluidic logic gates have many applications in diagnostic tests and biosciences due to their automation and cascading ability. Although most biological fluids, such as blood, exhibit non-Newtonian properties, all previous studies in this field have been with Newtonian fluids. Additionally, none of the previous work has studied the functional area of logic gates. In the present work, AND-OR logic gate with power-law fluid is considered. The effect of important parameters such as non-Newtonian fluid properties, droplet length, capillary number, and geometrical properties of the microfluidic system on the operating region of the system has been investigated. The results show... 

    Temperature rise in electroosmotic flow of typical non-newtonian biofluids through rectangular microchannels

    , Article Journal of Heat Transfer ; Volume 136, Issue 3 , March , 2014 ; ISSN: 00221481 Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior... 

    Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels

    , Article Theoretical and Computational Fluid Dynamics ; Vol. 28, issue. 4 , 2014 , pp. 409-426 ; ISSN: 09354964 Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In this paper, the fully developed electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A complete parametric study reveals that the pressure effects are more pronounced at higher values of the channel aspect ratio and smaller values of the flow behavior index. The Poiseuille number is found to be an increasing function of the channel aspect ratio for pressure assisted flow and a decreasing function of this parameter for pressure opposed flow. It is also observed that the Poiseuille number is... 

    Joule heating effects in electrokinetically driven flow through rectangular microchannels: An analytical approach

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 17, Issue 3 , 2013 , Pages 173-193 ; 15567265 (ISSN) Sadeghi, A ; Kazemi, Y ; Saidi, M. H ; Sharif University of Technology
    2013
    Abstract
    This is a theoretical study dealing with mixed electroosmotic and pressure-driven flow of a Newtonian liquid in a rectangular microchannel. Both and thermal boundary conditions are considered and the Debye-Hückel linearization is invoked. The governing equations are made dimensionless assuming fully developed conditions and then analytically solved using an infinite series solution. The governing factors are found to be the dimensionless Debye-Hückel parameter, velocity scale ratio, dimensionless Joule heating parameter, and channel aspect ratio. The results indicate that the Nusselt number is an increasing function of the channel aspect ratio, whereas the opposite is true for the velocity... 

    Analytical and numerical evaluation of steady flow of blood through artery

    , Article Biomedical Research (India) ; Volume 24, Issue 1 , 2013 , Pages 88-98 ; 0970938X (ISSN) Sedaghatizadeh, N ; Barari, A ; Soleimani, S ; Mofidi, M ; Sharif University of Technology
    2013
    Abstract
    Steady blood flow through a circular artery with rigid walls is studied by COSSERAT Continuum Mechanical Approach. To obtain the additional viscosities coefficients, feed forward multi-layer perceptron (MLP) type of artificial neural networks (ANN) and the results obtained in previous empirical works is used. The governing filed equations are derived and solution to the Hagen-Poiseuilli flow of a COSSERAT fluid in the artery is obtained analytically by Homotopy Perturbation Method (HPM) and numerically using finite difference method. Comparison of analytical results with numerical ones showed excellent agreement. In addition microrotation and the velocity profile along the radius are...