Loading...
Search for: nonlinear-control-systems
0.005 seconds
Total 50 records

    Adaptive nonlinear control of pH neutralization processes using fuzzy approximators

    , Article Control Engineering Practice ; Volume 17, Issue 11 , 2009 , Pages 1329-1337 ; 09670661 (ISSN) Salehi, S ; Shahrokhi, M ; Nejati, A ; Sharif University of Technology
    2009
    Abstract
    In this paper, an adaptive control scheme, based on fuzzy logic systems, for pH control is addressed. For implementation of the proposed scheme no composition measurement is required. Stability of the closed-loop system is established and it is shown that the solution of the closed-loop system is uniformly ultimately bounded and under a certain condition, asymptotical stability is achieved. Effectiveness of the proposed controller is tested through simulation and experimental studies. Results indicate that the proposed controller has good performances in set-point tracking and load rejection and much better than that of a tuned PI controller. © 2009 Elsevier Ltd. All rights reserved  

    A fuzzy sliding mode control approach for nonlinear chemical processes

    , Article Control Engineering Practice ; Volume 17, Issue 5 , 2009 , Pages 541-550 ; 09670661 (ISSN) Shahraz, A ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    2009
    Abstract
    Fuzzy sliding mode control (FSMC) as a robust and intelligent nonlinear control technique is proposed to control processes with severe nonlinearity and unknown models. The performance of the proposed method has been evaluated for both single input single output (SISO) and MIMO nonlinear systems through its application in three severely nonlinear processes that are frequently used as benchmarks of nonlinear process control strategies. The evaluation shows that, despite its lack of dependence on the process model, the proposed method performs almost the same as conventional sliding mode control alternatives that utilize all the information that exists in the mathematical model of the process.... 

    Fractional order MIMO controllers for robust performance of airplane longitudinal motion

    , Article Aerospace Science and Technology ; Volume 91 , 2019 , Pages 617-626 ; 12709638 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    This paper presents fractional order multi-input multi-output (MIMO) controllers for the robust performance of airplane longitudinal motion. A novel necessary and sufficient criterion is offered by using the value set concept to analyze the robust performance of fractional order MIMO uncertain systems based on the location of the characteristic equation roots. The criterion is applicable to all linear time-invariant systems of commensurate and incommensurate orders with complex coefficients. The obtained results are applied to an uncertain linear model of a business airplane to improve the robust performance of its longitudinal motion by decentralized MIMO output feedback and MIMO state... 

    Wind-tolerant optimal closed loop controller design for a domestic atmospheric research airship

    , Article Mechanics Based Design of Structures and Machines ; 2020 Amani, S ; Pourtakdoust, S. H ; Pazooki, F ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Airships are inherently sensitive to random atmospheric disturbances that could potentially make their data gathering and observation missions a formidable task. In this context robust closed loop feedback controllers are important. The present study is therefore focused on optimal feedback controller design of an indigenous domestically designed airship (DA) for added robustness against atmospheric disturbances. While the general airship six degrees of freedom (6DoF) governing equations of motion are mathematically nonlinear, one often needs to resort to local linearization methods to benefit from proven linear closed loop controller (CLC) design approaches. In this sense an optimal linear... 

    Adaptive multi-model sliding mode control of robotic manipulators using soft computing

    , Article Neurocomputing ; Volume 71, Issue 13-15 , 2008 , Pages 2702-2710 ; 09252312 (ISSN) Sadati, N ; Ghadami, R ; Sharif University of Technology
    Elsevier  2008
    Abstract
    In this paper, an adaptive multi-model sliding mode controller for robotic manipulators is presented. By using the multiple models technique, the nominal part of the control signal is constructed according to the most appropriate model at different environments. Adaptive single-input-single-output (SISO) fuzzy systems or radial basis function (RBF) neural networks, regarding their functional equivalence property, are used to approximate the discontinuous part of control signal; control gain, in a classical sliding mode controller. The key feature of this scheme is that prior knowledge of the system uncertainties is not required to guarantee the stability. Also the chattering phenomenon in... 

    Nonlinear control of multiple equilibrium systems and unknown sinusoidal disturbance by using backstepping technique and neural-fuzzy controller

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 9 , 2007 , Pages 415-422 ; 0791843033 (ISBN) Abolfathi Nobari, N ; Alizadeh, D ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Controlling nonlinear systems have always been a challenging problem. Complexity is mostly the result of nonlinear systems behavior dependence on initial conditions and input. Linearization techniques are such kinds of nonlinear systems analysis tools, which can give suitable results in neighborhood of equilibrium points. In addition, phase portraits are very efficient for visualizing the behavior of system in equilibrium points' neighborhood. In this paper, designing a controller for a low order dynamic system with multiple equilibrium points in presence of a sinusoidal disturbance with unknown amplitude and unknown bounded frequency is investigated. The proposed controller is based on a... 

    Wind-tolerant optimal closed loop controller design for a domestic atmospheric research airship

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 6 , 2022 , Pages 2046-2066 ; 15397734 (ISSN) Amani, S ; Pourtakdoust, S. H ; Pazooki, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Airships are inherently sensitive to random atmospheric disturbances that could potentially make their data gathering and observation missions a formidable task. In this context robust closed loop feedback controllers are important. The present study is therefore focused on optimal feedback controller design of an indigenous domestically designed airship (DA) for added robustness against atmospheric disturbances. While the general airship six degrees of freedom (6DoF) governing equations of motion are mathematically nonlinear, one often needs to resort to local linearization methods to benefit from proven linear closed loop controller (CLC) design approaches. In this sense an optimal linear... 

    Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control

    , Article IEEE Transactions on Power Systems ; Volume 35, Issue 3 , 2020 , Pages 2037-2046 Hosseini, S. A ; Toulabi, M. R ; Salehi Dobakhshari, A ; Ashouri Zadeh, A ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper, a modified frequency control model is proposed, where the demand response (DR) control loop is added to the traditional load frequency control (LFC) model to improve the frequency regulation of the power system. One of the main obstacles for using DR in the frequency regulation is communication delay which exists in transferring data from control center to appliances. To overcome this issue, an adaptive delay compensator (ADC) is used in order to compensate the communication delay in the control loop. In this regard, a weighted combination of several vertex compensators, whose weights are updated according to the measured delay, is employed. Generating the phase lead is the... 

    Stabilization of biped walking robot using the energy shaping method

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 3, Issue 4 , 2008 ; 15551423 (ISSN) Azadi Yazdi, E ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    The biped walking robot demonstrates a stable limit cycle on shallow slopes. In previous researches, this passive gait was shown to be sensitive to ground slope and initial conditions. In this paper, we discuss the feedback stabilization of a biped robot by the "energy shaping" technique. Two designs are proposed to reduce the sensitivity of the biped walking robot to slope and initial conditions. In the first design, a moving mass actuator is located on each link of the robot. The actuators are used to shape the potential energy of the biped robot so that it tracks the potential energy of a known passive gait of a similar biped robot on a different slope. Although the method is applied to a... 

    Estimates of average inelastic deformation demands for regular steel frames by the Endurance Time method

    , Article Scientia Iranica ; Volume 16, Issue 5 A , 2009 , Pages 388-402 ; 10263098 (ISSN) Riahi, H. T ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    The Endurance Time (ET) method is a new dynamic pushover procedure in which structures are subjected to gradually intensifying acceleration functions and their performance is assessed based on the length of the time interval that they can satisfy required performance objectives. In this paper, the accuracy of the Endurance Time method in estimating average deformation demands of low and medium rise steel frames using ETASOf series of ET acceleration functions has been investigated. The precision of the ET method in predicting the response of steel frames in nonlinear analysis is investigated by considering a simple set of moment-resisting frames. An elastic-perfectly-plastic material model...