Loading...
Search for: nonlinear-system
0.01 seconds
Total 221 records

    Analysis of the convergence and closed loop stability in EDMC

    , Article Scientia Iranica ; Volume 12, Issue 1 , 2005 , Pages 43-54 ; 10263098 (ISSN) Haeri, M ; Zadehmorshed Beik, H ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    In this paper, the convergence and stability conditions of extended DMC in the control of nonlinear SISO and MIMO systems are investigated. The formulations are based on the ordinary DMC in which, with successive linearization of the nonlinear model and new interpretation of disturbance, the nonlinear extension is deduced. In addition, new convergence and stability criteria are derived for SISO and MIMO systems. These criteria include convergence and stability in the case of longer control (M > 1) and prediction (P > 1) horizons, as well as the finite and infinite sampling time. Finally, the simulation results for a MIMO (3 × 3) model, based on a power unit nonlinear plant, are presented. ©... 

    Rough terrain rovers dynamics analysis and optimization

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 7 B , 2005 , Pages 903-909 ; 0791847446 (ISBN) Tavakoli Nia, H ; Alemohammad, S. H ; Bagheri, S ; Khiabani, R. H ; Meghdari, A ; Sharif University of Technology
    2005
    Abstract
    In this paper a new approach to dynamics optimization of rough terrain rovers is introduced. Since rover wheels traction has a significant role in rover mobility, optimization is based on the minimization of traction at rover wheel-ground interfaces. The method of optimization chosen is Genetic Algorithm (GA) which is a directed random search technique along with the usual optimization based on directional derivatives. GA is a suitable and efficient method of optimization for nonlinear problems. The procedure is applied on a specific rough terrain rover called CEDRA-I Shrimp Rover. Dynamical equations are obtained using Kane's method. Finally, the results are verified by modeling of the... 

    Adaptive output feedback tracking controller for a class of uncertain strict feedback nonlinear systems in the absence of state measurements

    , Article International Journal of Systems Science ; Volume 43, Issue 2 , 2012 , Pages 201-210 ; 00207721 (ISSN) Salehi, S ; Shahrokhi, M ; Sharif University of Technology
    2012
    Abstract
    In this article, design of an adaptive control scheme for a class of uncertain single-input single-output systems in strict feedback form via a backstepping technique has been proposed. It is assumed that system output and its derivatives are available. By virtue of the observability concept, it is shown that for this class of systems there exists a one-to-one map, which maps output and its derivatives to system states. By means of this mapping and using linearly parametrised approximators, such as fuzzy logic systems or neural networks, the uncertain nonlinear dynamics and unavailable states are estimated. The proposed adaptive controller guarantees that the closed-loop system is uniformly... 

    Study on Periodic Orbits in Nonlinear Fractional Order Systems Via Perturbation Methods

    , M.Sc. Thesis Sharif University of Technology Yazdani Jahromi, Masoud (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    Using fractional order calculus to model complex phenomena with combined behavior (i.e., dissipative, capacitive and inertia behavior) is one of the most recent research fields in the world. These accurate models lead to better understanding of the phenomena. For example, consider viscoelastic materials. In early models, dissipative behavior is separated from capacitive behavior but by using fractional order models, these two behaviors are considered simultaneously thus the complexity of the model would be reduced. To use fractional order models in real-life engineering applications, it is important to investigate the dynamics of these systems. Unfortunately, there are a few proper... 

    Robust Model Predictive Control for Nonlinear Systems using Linear Matrix Inequality

    , M.Sc. Thesis Sharif University of Technology Khaksarpour, Reza (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    The constrained nonlinear systems with large operating regions have attracted great attention due to their correspondence with the most practical systems. There are several tools such as gain scheduling and Nonlinear Model Predictive Control (NMPC) to control them. Gain scheduling, with ability to provide stability guarantees between the estimated stability regions overlapping each other and to cover a large space of the allowable operating range of the system, is an attractive practical approach to control the systems with large operating regions. But this strategy do not account for constraints explicitly by online optimization. On the contrary, NMPC handles constraints on the manipulated... 

    Mechanical Systems Using Nonlinear State Feedback

    , M.Sc. Thesis Sharif University of Technology Zade Gharejehdaghi, Elahe (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    Disturbance is one of the inseparable components of the mechanical systems which cannot be avoided. In these systems a number of inner and outer sources exist which are the cause of disturbance. Abrupt changes in torque, uncertainty in parameters, mechanical impulses and external forces on robot’s parts all can be mentioned as examples which introduce disturbance that affects the output of mechanical and robotic systems. Therefore, disturbance rejection is considered indispensable in robotic control systems. There are number of problems which are associated with disturbance rejection. In several methods, mostly optimization based methods, system fails to completely reject the disturbance and... 

    Optimal Selection of Local Models in Multi-Model Method

    , Ph.D. Dissertation Sharif University of Technology Ahmadi, Mahdi (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    Many processes and real world systems indicate nonlinear behavior and operate either naturally in multiple regions or in a wide range of operation space. Modelling and control of these systems by nonlinear methods needs to have a deep insight. Furthermore, the nonlinear methods leads to complexity issues. To overcome these problems, multi-model methods are introduced which consist of two steps, decomposition and combination. In decomposition step, the complex system is divided into a set of simple models; in the combination step, the behavior of local models are combined. How to decompose to local models and how to combine them are two main questions in this area which not answered... 

    Approximation of Nonlinear Systems Based on Multiple Linear Modeling

    , M.Sc. Thesis Sharif University of Technology Alem, Fakhreddin (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    Inthis thesis, we provide a reduced multiple linear approximationfornonlinear systems. This approximationis a weighted summation of reduced order models thatapproximates the states or output(s) of the nonlinear system. It can be used inreal-time control instead of high-ordernonlinear models in order toreduce thecomputational cost. The reduction of computation cost is claimed qualitatively, based on the linearity of the approximation and its less order compared to the original model. To form amultiple modelapproximation eachlinearmodelis obtained from linearization atanoperating point. Then,each model is reduced byalinearreduction method. We used truncation and balanced residualization... 

    Control of Hiv-1 Infection Using Artificial Intelligence Methods

    , M.Sc. Thesis Sharif University of Technology Rezvani, Soheil (Author) ; Shahrokhi, Mohammd (Supervisor)
    Abstract
    This project presents algorithms for intelligent control of the viral load in a HIV-1 infection model. The first part of thesis was dedicated to the study of the three states model adopted to describe the HIV-1 infection. A sensitivity analysis of the model parameters was described and computer simulations were provided to show the influence of the parameters explicitly. Then, an internal model control based on neural networks was implemented on the introduced infection model with including the RTIs and PIs drugs efficacies as control input. A stable adaptive neuro-control approach was presented for affine in the control nonlinear dynamical systems, whose nonlinearities were assumed to be... 

    Stability and Tracking of Nonlinear Noisy Dynamic Systems over the Limited Capacity Communication Channel

    , M.Sc. Thesis Sharif University of Technology Ghorbani Shektaei, Reza (Author) ; Farhadi, Alireza (Supervisor)
    Abstract
    This thesis is concerned with stability and tracking of nonlinear noisy Lipschitz systems over the packet erasure channel with feedback acknowledgment when system and measurement are due to bounded noises. The desired stability and tracking criteria is bounded stability and tracking in probability. Two approaches are adopted to address the desired stability and tracking performance, one is based on the Chebyshev inequality and the other is based on the Binomial distribution. It is illustrated that when the erasure probability is large, the approach based on the Chebyshev inequality provides a better bound for stability and tracking in probability; while, when the erasure probability is... 

    Optimal Design of Partial State-Feedback Controllers

    , M.Sc. Thesis Sharif University of Technology Farrokhi, Farhad (Author) ; Karimi, Houshang (Supervisor) ; Karimi, Masoud (Supervisor)
    Abstract
    Design of optimal controllers for nonlinear systems and even for linear systems is one of the most important parts of the control science. In optimal controller design, our aim is to maximize or minimize some kind of cost function associated with that particular problem. Such cost functions are usually combining the overall control effort, system’s energy, or some other important specifications of the system. Explicit solution for linear quadratic controllers exists under some mild conditions such as stabilizability of the system. The solution is in the form of a full state-feedback law. But in practical problems, we may not have access to all of the system state variables. The problem can... 

    Event-Triggered Adaptive Control of a Class of Uncertain Nonlinear Systems

    , Ph.D. Dissertation Sharif University of Technology Ghazi Saeedi, Hamid Reza (Author) ; Tavazoei, Mohammad Saleh (Supervisor)
    Abstract
    Considering uncertainty is of great importance in the design of controllers for dynamical systems because the existence of uncertainty is inevitable in the modeling of almost all real-world systems. There are numerous methods and strategies for dealing with the control of uncertain systems in control systems theory including adaptive and robust approaches. The former one is more suitable for cases in which the information about uncertainty is very poor compared to robust techniques that are applicable in the cases more data is available about uncertainty. For instance, where there is no data about the direction in the actuator model, adaptive control methods are the only applicable choices.... 

    Toward searching possible oscillatory region in order space for nonlinear fractional-order systems

    , Article Journal of Computational and Nonlinear Dynamics ; Vol. 9, issue. 2 , 2014 Tavazoei, M. S ; Sharif University of Technology
    Abstract
    Finding the oscillatory region in the order space is one of the most challenging problems in nonlinear fractional-order systems. This paper proposes a method to find the possible oscillatory region in the order space for a nonlinear fractional-order system. The effectiveness of the proposed method in finding the oscillatory region and special order sets placed in its boundary is confirmed by presenting some examples  

    Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation

    , Article Fuzzy Sets and Systems ; May , 2016 ; 01650114 (ISSN) Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This paper addresses design of an observer-based adaptive fuzzy controller for a class of single-input-single-output (SISO) nonlinear systems with unknown dynamics subject to input nonlinearity and unknown direction. The proposed controller is singularity free. A high-gain observer is designed to estimate the unmeasured states, and the Lipschitz condition for proving boundedness of the estimated states is relaxed. The Nussbaum function is used to handle the unknown virtual control directions and the backstepping technique has been applied for controller design. It is proved that all closed loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output tracking error... 

    Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models

    , Article Chemical Engineering Science ; Volume 129 , 2015 , Pages 223-231 ; 00092509 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Representing nonlinear systems by linear models along with structured or unstructured uncertainties and applying robust control strategies could reduce the computational complexity in comparison with implementing the nonlinear model predictive controllers. In this paper design of robust model predictive controllers which are based on special classes of nonlinear systems representations called Wiener and Hammerstein are presented. The proposed algorithms approximate the nonlinear systems by uncertain linear models and reduce online the computational demands in the control implementation. The advantages of the proposed approaches are illustrated by two examples  

    Vibration absorber design to suppress regenerative chatter in nonlinear milling process: Application for machining of cantilever plates

    , Article Applied Mathematical Modelling ; Volume 39, Issue 2 , 2015 , Pages 600-620 ; 0307904X (ISSN) Moradi, H ; Vossoughi, G ; Behzad, M ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In this paper, a tunable vibration absorber (TVA) is designed to suppress regenerative chatter in milling of cantilever plates. In machining industry, the majority of work-piece materials or the interaction of work-piece/cutting tool causes the cutting forces to demonstrate nonlinear behavior. The application of TVA (as a semi-active controller) is investigated for the process with an extensive nonlinear model of cutting forces. Under regenerative chatter conditions, optimum values of the absorber position and its spring stiffness are found such that the plate vibration is minimized. For this purpose, an optimal algorithm is developed based on mode summation approach. Results are presented... 

    Parallel nonlinear analysis of weighted brain's gray and white matter images for Alzheimer's dementia diagnosis

    , Article Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference ; 2010 , Pages 5573-5576 ; 1557170X (ISSN) Razavian, S. M ; Torabi, M ; Kim, K ; Sharif University of Technology
    2010
    Abstract
    In this study, we are proposing a novel nonlinear classification approach to discriminate between Alzheimer's Disease (AD) and a control group using T1-weighted and T2-weighted Magnetic Resonance Images (MRI's) of brain. Since T1-weighted images and T2-weighted images have inherent physical differences, obviously each of them has its own particular medical data and hence, we extracted some specific features from each. Then the variations of the relevant eigenvalues of the extracted features were tracked to pick up the most informative ones. The final features were assigned to two parallel systems to be nonlinearly categorized. Considering the fact that AD defects the white and gray regions... 

    Shear capacity of C-shaped and L-shaped angle shear connectors

    , Article PLoS ONE ; Volume 11, Issue 8 , 2016 ; 19326203 (ISSN) Tahmasbi, F ; Maleki, S ; Shariati, M ; Ramli Sulong, N. H ; Tahir, M. M ; Sharif University of Technology
    Public Library of Science 
    Abstract
    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress... 

    Blood inventory management in hospitals: considering supply and demand uncertainty and blood transshipment possibility

    , Article Operations Research for Health Care ; Volume 15 , 2017 , Pages 43-56 ; 22116923 (ISSN) Najafi, M ; Ahmadi, A ; Zolfagharinia, H ; Sharif University of Technology
    Abstract
    Despite significant advancements in medicine, human blood is still a scarce resource. Only humans produce it, and there is currently no other product or alternative chemical process that can be used to generate blood. For this reason, blood is a vital commodity in healthcare systems. Since blood is also a perishable product, its inventory management is difficult. The challenge is in holding enough stock to ensure a high level of supply while keeping losses from expiration at a minimum. This research will investigate blood inventory management in a hospital, and develop a mathematical model to manage blood ordering and issuing. This study will account for the fact that blood demand and supply... 

    Constrained tracking control for nonlinear systems

    , Article ISA Transactions ; Volume 70 , 2017 , Pages 64-72 ; 00190578 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be...