Loading...
Search for: nucleotide
0.006 seconds
Total 35 records

    Meta-aligner: long-read alignment based on genome statistics

    , Article BMC Bioinformatics ; Volume 18, Issue 1 , 2017 ; 14712105 (ISSN) Nashta Ali, D ; Aliyari, A ; Ahmadian Moghadam, A ; Edrisi, M. A ; Motahari, S. A ; Khalaj, B. H ; Sharif University of Technology
    Abstract
    Background: Current development of sequencing technologies is towards generating longer and noisier reads. Evidently, accurate alignment of these reads play an important role in any downstream analysis. Similarly, reducing the overall cost of sequencing is related to the time consumption of the aligner. The tradeoff between accuracy and speed is the main challenge in designing long read aligners. Results: We propose Meta-aligner which aligns long and very long reads to the reference genome very efficiently and accurately. Meta-aligner incorporates available short/long aligners as subcomponents and uses statistics from the reference genome to increase the performance. Meta-aligner estimates... 

    Mechanical differences between ATP and ADP actin states: A molecular dynamics study

    , Article Journal of Theoretical Biology ; Volume 448 , 2018 , Pages 94-103 ; 00225193 (ISSN) Mehrafrooz, B ; Shamloo, A ; Sharif University of Technology
    Academic Press  2018
    Abstract
    This paper aims to give a comprehensive atomistic modeling of the nanomechanical behavior of actin monomer. Actin is a ubiquitous and essential component of cytoskeleton which forms many different cellular structures. Despite for several years great effort has been devoted to the investigation of mechanical properties of the actin filament, studies on the nanomechanical behavior of actin monomer are still lacking. These scales are, however, important for a complete understanding of the role of actin as an important component in the cytoskeleton structure. Based on the accuracy of atomistic modeling methods such as molecular dynamics simulations, steered molecular dynamics method is performed... 

    Application of artificial neural network for prediction of risk of multiple sclerosis based on single nucleotide polymorphism genotypes

    , Article Journal of Molecular Neuroscience ; Volume 70, Issue 7 , 2020 , Pages 1081-1087 Ghafouri-Fard, S ; Taheri, M ; Omrani, M. D ; Daaee, A ; Mohammad Rahimi, H ; Sharif University of Technology
    Humana Press Inc  2020
    Abstract
    The artificial neural network (ANN) is a sort of machine learning method which has been used in determination of risk of human disorders. In the current investigation, we have created an ANN and trained it based on the genetic data of 401 multiple sclerosis (MS) patients and 390 healthy subjects. Single nucleotide polymorphisms (SNPs) within ANRIL (rs1333045, rs1333048, rs4977574 and rs10757278), EVI5 (rs6680578, rs10735781 and rs11810217), ACE (rs4359 and rs1799752), MALAT1 (rs619586 and rs3200401), GAS5 (rs2067079 and rs6790), H19 (rs2839698 and rs217727), NINJ2 (rs11833579 and rs3809263), GRM7 (rs6782011 and rs779867), VLA4 (rs1143676), CBLB (rs12487066) and VEGFA (rs3025039 and... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    Solving haplotype reconstruction problem in MEC model with hybrid information fusion

    , Article EMS 2008, European Modelling Symposium, 2nd UKSim European Symposium on Computer Modelling and Simulation, Liverpool, 8 September 2008 through 10 September 2008 ; 2008 , Pages 214-218 ; 9780769533254 (ISBN) Asgarian, E ; Moeinzadeh, M. H ; Habibi, J ; Sharifian-R, S ; Rasooli-V, A ; Najafi-A, A ; Sharif University of Technology
    2008
    Abstract
    Single Nucleotide Polymorphisms (SNPs), a single DNA base varying from one individual to another, are believed to be the most frequent form responsible for genetic differences. Genotype is the conflated information of a pair of haplotypes on homologous chromosomes. Although haplotypes have more information for disease associating than individual SNPs and genotype, it is substantially more difficult to determine haplotypes through experiments. Hence, computational methods which can reduce the cost of determining haplotypes become attractive alternatives. MEC, as a standard model for haplotype reconstruction, is fed by fragments as input to infer the best pair of haplotypes with minimum error... 

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals... 

    DFT study of the interaction of cytidine and 2′-deoxycytidine with Li+, Na+, and K+: effects of metal cationization on sugar puckering and stability of the N-glycosidic bond

    , Article Carbohydrate Research ; Volume 344, Issue 6 , 2009 , Pages 771-778 ; 00086215 (ISSN) Aliakbar Tehrani, Z ; Fattahi, A. R ; Pourjavadi, A ; Sharif University of Technology
    2009
    Abstract
    Density functional theory (DFT) calculations were performed at the B3LYP level with a 6-311++G(d,p) basis set to systematically explore the geometrical multiplicity and binding strength for complexes formed by Li+, Na+, and K+ with cytidine and 2′-deoxycytidine. All computational studies indicate that the metal ion affinity (MIA) decreases from Li+ to Na+ and K+ for cytosine nucleosides. For example, for cytidine the affinity for the above metal ions are 79.5, 55.2, and 41.8 and for 2′-deoxycytidine, 82.8, 57.4, and 42.2 kcal/mol, respectively. It is also interesting to mention that linear correlations between calculated MIA values and the atomic numbers (Z) of the above metal ions were... 

    A tale of two symmetrical tails: Structural and functional characteristics of palindromes in proteins

    , Article BMC Bioinformatics ; Volume 9 , 2008 ; 14712105 (ISSN) Sheari, A ; Kargar, M ; Katanforoush, A ; Arab, S ; Sadeghi, M ; Pezeshk, H ; Eslahchi, C ; Marashi, S. A ; Sharif University of Technology
    2008
    Abstract
    Background: It has been previously shown that palindromic sequences are frequently observed in proteins. However, our knowledge about their evolutionary origin and their possible importance is incomplete. Results: In this work, we tried to revisit this relatively neglected phenomenon. Several questions are addressed in this work. (1) It is known that there is a large chance of finding a palindrome in low complexity sequences (i.e. sequences with extreme amino acid usage bias). What is the role of sequence complexity in the evolution of palindromic sequences in proteins? (2) Do palindromes coincide with conserved protein sequences? If yes, what are the functions of these conserved segments?... 

    MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments

    , Article PLoS Computational Biology ; Volume 18, Issue 6 , 2022 ; 1553734X (ISSN) Alinejad Rokny, H ; Modegh, R. G ; Rabiee, H. R ; Sarbandi, E. R ; Rezaie, N ; Tam, K. T ; Forrest, A. R. R ; Sharif University of Technology
    Public Library of Science  2022
    Abstract
    Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction frequencies between every position in the genome and every other position. Biologically functional interactions are expected to occur more frequently than transient background and artefactual interactions. To identify biologically relevant interactions, several background models that take biases such as distance, GC content and mappability into account have been proposed. Here we introduce MaxHiC, a background correction tool that deals with these complex biases and robustly... 

    Small RNA sequencing reveals dlk1-dio3 locus-embedded microRNAs as major drivers of ground-state pluripotency

    , Article Stem Cell Reports ; Volume 9, Issue 6 , 2017 , Pages 2081-2096 ; 22136711 (ISSN) Moradi, S ; Sharifi Zarchi, A ; Ahmadi, A ; Mollamohammadi, S ; Stubenvoll, A ; Günther, S ; Hosseini Salekdeh, G ; Asgari, S ; Braun, T ; Baharvand, H ; Sharif University of Technology
    Abstract
    Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the “miRNome” of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most “ground-state miRNAs” are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the... 

    Point-of-use rapid detection of sars-cov-2: Nanotechnology-enabled solutions for the covid-19 pandemic

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 14 , 2020 , Pages 1-23 Rabiee, N ; Bagherzadeh, M ; Ghasemi, A ; Zare, H ; Ahmadi, S ; Fatahi, Y ; Dinarvand, R ; Rabiee, M ; Ramakrishna, S ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in... 

    Dna-Rna hybrid (R-loop): From a unified picture of the mammalian telomere to the genome-wide profile

    , Article Cells ; Volume 10, Issue 6 , 2021 ; 20734409 (ISSN) Rassoulzadegan, M ; Sharifi Zarchi, A ; Kianmehr, L ; Sharif University of Technology
    MDPI  2021
    Abstract
    Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting...