Loading...
Search for: numerical-method
0.011 seconds

    Developing a multi-objective multi-layer model for optimal design of residential complex energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 138 , 2022 ; 01420615 (ISSN) Davoudi, M ; Jooshaki, M ; Moeini Aghtaie, M ; Hossein Barmayoon, M ; Aien, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Optimal planning of residential complex energy systems requires thorough mathematical modelling to address the interconnections between all the energy installations from the largest ones, shared by all the residents, to the smallest ones in each distinct unit. Besides, conflicting desires of investors and residents in various aspects such as reliability index make this problem more challenging. In response, this paper presents a thorough framework to obtain the optimum design and operation of a residential complex energy system from scratch. To address the appropriate interconnection between various components of such an energy system, a multi-layer energy hub structure is proposed. Besides,... 

    Experimental and numerical investigation of squat submarines hydrodynamic performances

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Sarraf, S ; Abbaspour, M ; Dolatshahi, K. M ; Sarraf, S ; Sani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper empirically examines the hydrodynamic performances of squat submarines under the resistance and wave tests beside numerical investigation of pressure drag reduction techniques. Despite vast information about the operation of the streamlined fluid vessels, there is not much information about the geometries and hydrodynamic behaviors of squat vessels with L/D ratios below four. This study experimentally investigates the impacts of various relative depths and flow inclinations, intending to find drag, heave, and sway forces at the velocities of 0.5, 1.0, 1.5, 2.0, and 2.5-m/s. A one-tenth scaled model of a squat submarine is examined under the resistance and wave train scenarios as... 

    TWO-Snapshot Doa estimation Via hankel-structured matrix completion

    , Article 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022, 23 May 2022 through 27 May 2022 ; Volume 2022-May , 2022 , Pages 5018-5022 ; 15206149 (ISSN); 9781665405409 (ISBN) Bokaei, M ; Razavikia, S ; Amini, A ; Rini, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, we study the problem of estimating the direction of arrival (DOA) using a sparsely sampled uniform linear array (ULA). Based on an initial incomplete ULA measurements, our strategy is to choose a sparse subset of array elements for measuring the next snapshot. Then, we use a Hankel-structured matrix completion to interpolate for the missing ULA measurements. Finally, the source DOAs are estimated using a subspace method such as Prony on the fully recovered ULA. We theoretically provide a sufficient bound for the number of required samples (array elements) for perfect recovery. The numerical comparisons of the proposed method with existing techniques such as atomic-norm... 

    Heat transfer of power-law fluids under electrowetting actuation in structured microchannels

    , Article International Communications in Heat and Mass Transfer ; Volume 130 , 2022 ; 07351933 (ISSN) Izadi, R ; Merdasi, A ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The dynamics and heat transfer performance of droplets play an important role in electrowetting systems. Contrary to the growing trend towards non-Newtonian fluids in electrotechnical systems, most researchers have focused on Newtonian fluids. In the current study, the interface is tracked by the phase-field method and afterwards, the numerical model is confirmed by comparing the results obtained from previous experimental and theoretical works. Several parameters such as power-law index and contact angle are analyzed. Furthermore, the dynamics and heat transfer of the droplets on chemically or topographically structured substrates in the presence of electrowetting are examined. It has been... 

    Finite-time stabilisation of a class of time-varying nonlinear systems by a mixed event-based and continuous-time strategy

    , Article International Journal of Systems Science ; Volume 53, Issue 3 , 2022 , Pages 526-537 ; 00207721 (ISSN) Ghazisaeedi, H.R ; Tavazoei, M. S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a mixed event-triggered and continuous-time control method is proposed, which can guarantee finite-time stabilisation of the fixed point in a class of time-varying nonlinear systems. Benefiting from an event-triggered framework, which is constructed based on the indefinite Lyapunov theory, the communication/computation costs in the transient time can be reduced by using the proposed method. In a special case, this method is converted to a fully event-triggered control strategy for asymptotic stabilisation of the fixed point in the considered class of time-varying nonlinear systems. The effectiveness of the proposed method is verified by numerical simulations. © 2021 Informa UK... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; Volume 40, Issue 2 , 2022 , Pages 233-242 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    A competitive inexact nonmonotone filter SQP method: convergence analysis and numerical results

    , Article Optimization Methods and Software ; Volume 37, Issue 4 , 2022 , Pages 1310-1343 ; 10556788 (ISSN) Ahmadzadeh, H ; Mahdavi Amiri, N ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    We propose an inexact nonmonotone successive quadratic programming (SQP) algorithm for solving nonlinear programming problems with equality constraints and bounded variables. Regarding the value of the current feasibility violation and the minimum value of its linear approximation over a trust region, several scenarios are envisaged. In one scenario, a possible infeasible stationary point is detected. In other scenarios, the search direction is computed using an inexact (truncated) solution of a feasible strictly convex quadratic program (QP). The search direction is shown to be a descent direction for the objective function or the feasibility violation in the feasible or infeasible... 

    Multi-objective economic-statistical design of simple linear profiles using a combination of NSGA-II, RSM, and TOPSIS

    , Article Communications in Statistics: Simulation and Computation ; Volume 51, Issue 4 , 2022 , Pages 1704-1720 ; 03610918 (ISSN) Roshanbin, N ; Ershadi, M. J ; Niaki, S. T. A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A multi-objective economic-statistical design is aimed in this article for simple linear profiles. In this design, the interval between two successive sampling intervals, the sample size and the number of adjustment points alongside, the parameters of the monitoring scheme are determined such that not only the implementation cost is minimized, but also the profile exhibits desired statistical performances. To this aim, three objective functions are considered in the multi-objective optimization model of the problem. The Lorenzen–Vance cost function is used to model the implementation cost as the first objective function to be minimized. The second objective function maximizes the in-control... 

    Aperiodic perforated graphene in optical nanocavity absorbers

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 276 , 2022 ; 09215107 (ISSN) Bidmeshkipour, S ; Akhavan, O ; Salami, P ; Yousefi, L ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Aperiodic perforated graphene layers were synthesized and used in fabrication of optical nanocavity absorbers. Chemical vapor deposition-grown graphene (Gr) layers were exposed to oxygen plasma etching to obtain the perforated graphene (pGr). The fabricated pGr/SiO2 (68 nm)/Ag (150 nm) nanocavity could present significant higher optical absorption, especially at around 530 nm wavelength region, as compared to a benchmark Gr/SiO2 (68 nm)/Ag (150 nm) sample. The effect of pore size of the pGr layer on the absorption property of the nanocavity has been studied by both experimental and numerical methods. The dependence of the absorption property of the nanocavity on the incident angles of... 

    Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey

    , Article Structural Concrete ; Volume 23, Issue 1 , 2022 , Pages 457-472 ; 14644177 (ISSN) Khaloo, A ; Daneshyar, A ; Rezaei, B ; Fartash, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Fracture process of fiber-reinforced concrete notched beams is investigated here. Polypropylene macrosynthetic fibers are utilized for reinforcing concrete specimens, and a high-strength mix design is used to produce strong bonds between the embossed polypropylene fibers and the cementitious matrix of beams. Considering different locations for the notch, this study focuses on bridging mechanism under different conditions using both experimental and numerical approaches. First mode of fracture occurs due to opening of crack faces. This mode of failure is simulated by imposing symmetric boundary conditions on middle-notched beams. Inducing the notch with an offset from the middle, mixed-mode... 

    Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 42, Issue 1 , November , 2012 , Pages 508-516 ; 01420615 (ISSN) Mohammadi Ivatloo, B ; Rabiee, A ; Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    This paper presents a novel heuristic algorithm for solving economic dispatch (ED) problems, by employing iteration particle swarm optimization with time varying acceleration coefficients (IPSO-TVAC) method. Due to the effect of valve-points and prohibited operation zones (POZs) in the generating units' cost functions, ED problem is a non-linear and non-convex optimization problem. The problem even may be more complicated if transmission losses are taken into account. The effectiveness of the proposed method is examined and validated by carrying out extensive tests on three different test systems. Valve-point effects, POZs, ramp-rate constraints and transmission losses are modeled. Numerical... 

    Time-varying acceleration coefficients IPSO for solving dynamic economic dispatch with non-smooth cost function

    , Article Energy Conversion and Management ; Volume 56 , 2012 , Pages 175-183 ; 01968904 (ISSN) Mohammadi Ivatloo, B ; Rabiee, A ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    The objective of the dynamic economic dispatch (DED) problem is to schedule power generation for the online units for a given time horizon economically, satisfying various operational constraints. Due to the effect of valve-point effects and prohibited operating zones (POZs) in the generating units cost functions, DED problem is a highly non-linear and non-convex optimization problem. The DED problem even may be more complicated if transmission losses and ramp-rate constraints are taken into account. This paper presents a novel and heuristic algorithm to solve DED problem of generating units, by employing time varying acceleration coefficients iteration particle swarm optimization... 

    Numerical modeling of ground settlement control of large span underground metro station in Tehran Metro using Central Beam Column (CBC) structure

    , Article Tunnelling and Underground Space Technology ; Volume 28, Issue 1 , 2012 , Pages 1-9 ; 08867798 (ISSN) Valizadeh Kivi, A ; Sadaghiani, M. H ; Ahmadi, M. M ; Sharif University of Technology
    Abstract
    The ground surface settlement caused by underground excavation is an important matter in urban development. The settlement control of large span underground station in Tehran Metro is investigated using a full three-dimensional (3-D) finite element analysis. A method of underground construction by increasing the rigidity of the supporting system using Central Beam Column (CBC) structure is introduced. In construction of large underground space, effect of presence of CBC structure is compared to a case without CBC structure. The CBC structure increases the rigidity of supports and decrease the stress concentration and displacement in supporting system. It generally decreases the soil... 

    An efficient method for nonlinear aeroelasticy of slender wings

    , Article Nonlinear Dynamics ; Volume 67, Issue 1 , 2012 , Pages 659-681 ; 0924090X (ISSN) Shams, S ; Sadr, M. H ; Haddadpour, H ; Sharif University of Technology
    2012
    Abstract
    This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these... 

    Investigation of the pressure distribution and transition point over a swept wing

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1277-1286 ; 10263098 (ISSN) Soltani, M. R ; Ghorbanian, K ; Masdari, M ; Sharif University of Technology
    2011
    Abstract
    A series of wind tunnel tests are performed to examine the flow field over a swept wing under various conditions. The wing has a laminar flow airfoil section, similar to those of the NACA 6-series. Static pressure distributions over the upper surface of the wing, in both chordwise and spanwise directions, are measured at different angles of attack. The data is employed to predict the transition point at each chordwise section. The skewness parameter of the pressure data shows that this factor drops to zero in the transition region. A comparison of the calculated transition point on the wing surface with that obtained from the 2D computational method shows reasonable agreement over a portion... 

    Numerical simulation of wave generated by landslide incidents in dam reservoirs

    , Article Landslides ; Volume 8, Issue 4 , 2011 , Pages 417-432 ; 1612510X (ISSN) Ataie Ashtiani, B ; Yavari Ramshe, S ; Sharif University of Technology
    2011
    Abstract
    In this work, a two-dimensional fourth-order Boussinesq-type numerical model is applied to estimate the impact of landslide-generated waves in dam reservoirs. This numerical model has recently been extended for simulating subaerial landslides. The extended model is validated using available three-dimensional experimental data, and a good agreement is obtained. The numerical model is then employed to investigate the impact of landslide-generated waves in two real cases, the Maku and Shafa-Roud dam reservoirs in the northwestern and the north of Iran, respectively. Generated wave heights, wave run-up, maximum wave height above dam crest, and dam overtopping volume have been estimated for each... 

    Numerical simulation of thermal barrier coating system under thermo-mechanical loadings

    , Article Proceedings of the World Congress on Engineering 2011, WCE 2011, 6 July 2011 through 8 July 2011 ; Volume 3 , July , 2011 , Pages 1959-1964 ; 9789881925152 (ISBN) Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    In the present paper, numerical simulation of thermal barrier coating system under thermo-mechanical loadings is performed, using the finite element method in ABAQUS software. The base material is Aluminum-silicon alloy, A356.0 which is widely used in automotive components such as diesel engine cylinder heads. Thermal barrier coatings (TBCs) are applied to combustion chamber in order to reduce fuel consumption and pollutions and also improve fatigue life of components. The roughness effect of coating layers on stress distribution of test specimens is investigated. Semi-ellipsoid roughness of the interfaces between substrate/bond coat and bond coat/top coat are simulated to get the stress... 

    Two phase modal analysis of nonlinear sloshing in a rectangular container

    , Article Ocean Engineering ; Volume 38, Issue 11-12 , August , 2011 , Pages 1277-1282 ; 00298018 (ISSN) Ansari, M. R ; Firouz Abadi, R. D ; Ghasemi, M ; Sharif University of Technology
    2011
    Abstract
    Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes... 

    Analytical model for the extraction of flaw-induced current interactions for SQUID NDE

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 4 , 2011 , Pages 3442-3446 ; 10518223 (ISSN) Sarreshtedari, F ; Hosseini, M ; Razmkhah, S ; Mehrany, K ; Kokabi, H ; Schubert, J ; Banzet, M ; Krause, H. J ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Incorporating an analytical approach to simulate the interaction of a series of long cracks and the induced current of a double-D excitation coil, we have developed a model-based method to do precise detection of the positions of the cracks in a metallic structure by using eddy-current superconducting quantum interference device (SQUID) nondestructive evaluation (NDE) measurements. Conventionally, the structure of the defects is found by iteratively solving a numerical forward problem, which is usually based on finite-element, boundary-element, or volume-integral method. This, however, incurs a heavy numerical burden, as every time the forward problem is to be solved, a rigorous numerical... 

    Implementing a high-order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method

    , Article International Journal for Numerical Methods in Fluids ; Volume 66, Issue 8 , July , 2011 , Pages 939-962 ; 02712091 (ISSN) Hejranfar, K ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    This paper uses a fourth-order compact finite-difference scheme for solving steady incompressible flows. The high-order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two-dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth-order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block-tridiagonal...