Loading...
Search for: numerical-method
0.017 seconds

    Optimization of reaction rate parameters in modeling of heavy paraffins dehydrogenation

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , 2011 , Pages 389-393 ; 2010376X (ISSN) Vafajoo, L ; Khorasheh, F ; Nakhjavani, M. H ; Fattahi, M ; Sharif University of Technology
    2011
    Abstract
    In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt-Sn/Al 2O 3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved... 

    Fully implicit compositional thermal simulator using rigorous multiphase calculations

    , Article Scientia Iranica ; Volume 18, Issue 3 C , June , 2011 , Pages 509-517 ; 10263098 (ISSN) Khorsandi Kouhanestani, S ; Bozorgmehry Boozarjomehry, R ; Pishvaie, M. R ; Sharif University of Technology
    2011
    Abstract
    Simulation of the in-situ combustion process is one of the most complex simulations amongst other reservoir flow simulations. Accurate simulation of the process is critical to obtain a successful implementation of the in-situ combustion process. Several factors impact performance of the simulation of this process. First are all the numerical models used for different sub-processes, such as reactions, fluid phase behavior, heat loss to surrounding formations and fluid physical properties. In the previous numerical models of the in-situ combustion process, very simplified models were used for the phase behavior of the fluid. Recent studies show that the fluid phase behavior model has a great... 

    MIMO radar waveform design in the presence of clutter

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 47, Issue 2 , 2011 , Pages 770-781 ; 00189251 (ISSN) Naghibi, T ; Behnia, F ; Sharif University of Technology
    Abstract
    Waveform design for target identification and classification in multiple-input multiple-output (MIMO) radar systems has been studied in several recent works. In previous works, optimal signals for an estimation algorithm are found assuming that only signal- independent noise exists. This work extends previous research by studying the case where clutter is also present. We develop a procedure to design the optimal waveform which minimizes estimation error at the output of the minimum mean squared error (MMSE) estimators in two scenarios. In the first one different transmit antennas see uncorrelated aspects of the target, and we consider the correlated target aspects in the second one.... 

    Dynamic analysis of an inclined Timoshenko beam traveled by successive moving masses/forces with inclusion of geometric nonlinearities

    , Article Acta Mechanica ; Volume 218, Issue 1-2 , 2011 , Pages 9-29 ; 00015970 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    In the first part of this paper, the nonlinear coupled governing partial differential equations of vibrations by including the bending rotation of cross section, longitudinal and transverse displacements of an inclined pinned-pinned Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity are derived. To do this, the energy method (Hamilton's principle) based on the large deflection theory in conjuncture with the von-Karman strain-displacement relations is used. These equations are solved using the Galerkin's approach via numerical integration methods to obtain dynamic... 

    Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams

    , Article Computers and Geotechnics ; Volume 38, Issue 2 , March , 2011 , Pages 142-166 ; 0266352X (ISSN) Khoei, A. R ; Mohammadnejad, T ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic... 

    An efficient SQUID NDE defect detection approach by using an adaptive finite-element modeling

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 24, Issue 1-2 , 2011 , Pages 1077-1081 ; 15571939 (ISSN) Sarreshtedari, F ; Razmkhah, S ; Hosseini, N ; Jurgen Schubert ; Banzet, M ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Incorporating the finite-element method for the modeling of the SQUID NDE response to a predefined defect pattern, an adaptive algorithm has been developed for the reconstruction of unknown defects using an optimization algorithm for updating of the forward problem. The defect reconstruction algorithm starts with an initial estimation for the defect pattern. Then the forward problem is solved and the obtained field pattern is compared with the measured signal from the SQUID NDE system. The result is used by an optimization algorithm to update the defect structure to be incorporated in the FEM forward problem for the next iteration. Since the mentioned model based inverse algorithm normally... 

    Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials

    , Article Strength of Materials ; Volume 47, Issue 5 , September , 2015 , Pages 740-754 ; 00392316 (ISSN) Haeri, H ; Khaloo, A ; Marji, M. F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Rocks and rock-like materials frequently fail under compression due to the initiation, propagation and coalescence of the pre-existing microcracks. The mechanism of microcrack coalescence process in rock-like materials is experimentally and numerically investigated. The experimental study involves some uniaxial compression tests on rock-like specimens specially prepared from portland pozzolana cement, mica sheets and water. The microcrack coalescence is studied by scanning electron microscopy on some of the prepared thin specimens. It is assumed that the mica sheets play the role of microcracks within the specimens. Some analytical and numerical studies are also carried out to simulate the... 

    Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 26, Issue 5 , October , 2010 , Pages 721-733 ; 05677718 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    Abstract
    Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between... 

    The Flexural instability of spinning flexible cylinder partially filled with viscous liquid

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 77, Issue 1 , September , 2010 , Pages 1-9 ; 00218936 (ISSN) Firouz Abadi, R. D ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    This paper deals with the flexural instability of flexible spinning cylinders partially filled with viscous fluid. Using the linearized Navier-Stokes equations for the incompressible flow, a two-dimensional model is developed for fluid motion. The resultant force exerted on the flexible cylinder wall as the result of the fluid motion is calculated as a function of lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton principle, the governing equations of flexural motion of the rotary flexible cylinder mounted on general viscoelastic supports are derived. Then combining the equations describing the fluid force on the flexible cylinder with the structural... 

    Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifers

    , Article Water Resources Management ; Volume 25, Issue 1 , 2010 , Pages 165-190 ; 09204741 (ISSN) Ataie Ashtiani, B ; Ketabchi, H ; Sharif University of Technology
    2010
    Abstract
    This paper presents an evolutionary based approach to achieve optimal management of a coastal aquifer to control saltwater intrusion. An improved Elitist Continuous Ant Colony Optimization (ECACO) algorithm is employed for optimal control variables setting of coastal aquifer management problem. The objectives of the optimal management are; maximizing the total water-pumping rate, while controlling the drawdown limits and protecting the wells from saltwater intrusion. Since present work is one of the first efforts towards the application of an ECACO algorithm, sharp interface solution for steady state problem is first exploited. The performance of the developed optimization model is evaluated... 

    Modeling of moving boundaries in large plasticity deformations via an enriched arbitrary Lagrangian-Eulerian FE method

    , Article Scientia Iranica ; Volume 17, Issue 2 A , 2010 , Pages 141-160 ; 10263098 (ISSN) Anahid, M ; Khoei, A. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, a new computational technique is presented for the modeling of moving boundaries in large plastic deformations based on an enriched arbitrary Lagrangian-Eulerian finite element method. An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to capture the advantages of both Lagrangian and Eulerian methods and alleviate the drawbacks of mesh distortion in Lagrangian formulation. An enriched finite element method is implemented based on the extended FEM technique to capture the arbitrary interfaces independent of element boundaries. The process is accomplished by performing a splitting operator to separate the material (Lagrangian) phase from the convective (Eulerian)... 

    Numerical study on boundary layer control using CH4[sbnd]H2[sbnd]air Micro-reacting jet

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22433-22452 ; 03603199 (ISSN) Mardani, A ; Yahyavi Koochaksarai, M ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The focus of present numerical study is on assessment of control of laminar separation bubble phenomenon using Micro-scale combustion actuators in an airfoil with low Reynolds number under surface effect and free flows. In this way, the characteristics of laminar separation bubble such as its formation, geometry, and transition from laminar to turbulent around airfoil SD8020 in attack angles of 5 and 8° are investigated. Following that, the new combustion actuators in Micro-scale, cold, and hot air-jet injection are introduced to control boundary layer flow in terms of eliminating the separation bubble. Some mechanisms are identified for improvement of methane-air premixed flame... 

    Power density optimization of PEMFC cathode with non-uniform catalyst layer by Simplex method and numerical simulation

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22260-22273 ; 03603199 (ISSN) Ebrahimi, S ; Roshandel, R ; Vijayaraghavan, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    One of the factors that has hindered the commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) has been the high cost per kW from the high cost of platinum catalyst. Hence it is important to optimize the use of the platinum catalyst. In many previous PEMFC models, the catalyst distribution in Cathode Catalyst Layer (CCL) was assumed to be uniform, and there are very few models in which the variation of catalyst loading across the CCL is taken into account. This paper aims to enhance PEMFC power density by optimally distributing the catalyst used in CCL employing a computational fluid dynamic (CFD) simulation in conjunction with agglomerate model of the CCL. First, a numerical... 

    Evaluation of trichloroethylene degradation by starch supported Fe/Ni nanoparticles via response surface methodology

    , Article Water Science and Technology ; Volume 73, Issue 4 , 2016 , Pages 935-946 ; 02731223 (ISSN) Nikroo, R ; Alemzadeh, I ; Vossoughi, M ; Haddadian, K ; Sharif University of Technology
    IWA Publishing 
    Abstract
    In this study, degradation of trichloroethylene (TCE), a chlorinated hydrocarbon, using starch supported Fe/Ni nanoparticles was investigated. The scanning electron microscope images showed applying water soluble starch as a stabilizer for the Fe/Ni nanoparticles tended to reduce agglomeration and discrete particle. Also the mean particle diameter reduced from about 70 nm (unsupported Fe/Ni nanoparticle) to about 30 nm. Effects of three key independent operating parameters including initial TCE concentration (10.0-300.0 mg L-1), initial pH (4.00-10.00) and Fe0 dosage (0.10-2.00) g L-1 on TCE dechlorination efficiency in 1 hour were analysed by employing response surface methodology (RSM).... 

    Stability and performance analysis of a single-stage grid-connected photovoltaic system using describing function theory

    , Article International Transactions on Electrical Energy Systems ; Volume 26, Issue 9 , 2016 , Pages 1898-1916 ; 20507038 (ISSN) Hejri, M ; Mokhtari, H ; Karimi, S ; Azizian, M. R ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Challenging problems in the design and analysis of photovoltaic (PV) systems stem from the nonlinear current–voltage (I–V) characteristics of solar cells. This paper presents an analytical analysis based on a describing function method to investigate the transient and steady-state characteristics of a three-phase single-stage grid-connected PV system. In this study, the nonlinear I–V characteristic of the PV array is linearized around the operating point. The nonlinear dynamic of the maximum power point tracking controller is divided into two parts of continuous and discrete. For the continuous part, the common small-signal linearization is applied, while for the discontinuous part, a... 

    Micromechanics and constitutive modeling of connective soft tissues

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 60 , 2016 , Pages 157-176 ; 17516161 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical... 

    CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape

    , Article Particuology ; Volume 25 , 2016 , Pages 72-82 ; 16742001 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Abstract
    We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the... 

    Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types

    , Article Journal of Separation Science ; Volume 40, Issue 20 , 2017 , Pages 4067-4075 ; 16159306 (ISSN) Shamloo, A ; Kamali, A ; Sharif University of Technology
    Abstract
    In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius–Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration.... 

    Analytical study of fluid flow modeling by diffusivity equation including the quadratic pressure gradient term

    , Article Computers and Geotechnics ; Volume 89 , 2017 , Pages 1-8 ; 0266352X (ISSN) Abbasi, M ; Izadmehr, M ; Karimi, M ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Abstract
    Diffusivity equation which can provide us with the pressure distribution, is a Partial Differential Equation (PDE) describing fluid flow in porous media. The quadratic pressure gradient term in the diffusivity equation is nearly neglected in hydrology and petroleum engineering problems such as well test analysis. When a compressible liquid is injected into a well at high pressure gradient or when the reservoir possess a small permeability value, the effect of ignoring this term increases. In such cases, neglecting this parameter can result in high errors. Previous models basically focused on numerical and semi-analytical methods for semi-infinite domain. To the best of our knowledge, no... 

    Numerical study of inlet turbulators effect on the thermal characteristics of a jet propulsion-fueled combustor and its hazardous pollutants emission

    , Article Journal of Heat Transfer ; Volume 139, Issue 6 , 2017 ; 00221481 (ISSN) Darbandi, M ; Ghafourizadeh, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    This work numerically studies the effects of inlet air and fuel turbulators on the thermal behavior of a combustor burning the jet propulsion (JP) (kerosene-surrogate) fuel and its resulting pollutants emission including the nanoparticulate soot aerosols and aromatic compounds. To model the soot formation, the method employs a semi-empirical two-equation model, in which the transport equations for soot mass fraction and soot number density are solved considering soot nanoparticles evolutionary process. The soot nucleation is described using the phenyl route in which the soot is formed from the polycyclic aromatic hydrocarbons. Incorporating a detailed chemical mechanism described by 200...