Loading...
Search for: oil-production
0.011 seconds
Total 122 records

    Analysis of a more realistic well representation during secondary recovery in 3-D continuum models

    , Article Computational Geosciences ; Volume 21, Issue 5-6 , 2017 , Pages 1035-1048 ; 14200597 (ISSN) Sadeghnejad, S ; Masihi, M ; Sharif University of Technology
    Abstract
    The effectiveness of secondary recovery methods in reservoir development studies depends on the knowledge about how fluid-carrying regions (i.e. good-quality rock types) are connected between injection and production wells. To estimate reservoir performance uncertainty, comprehensive simulations on many reservoir model realisations are necessary, which is very CPU consuming and time demanding. Alternatively, we can use much simpler and physically based methods such as percolation approach. Classic percolation assumes connectivity between opposite 2-D faces of a 3-D system; whereas, hydrocarbon production is achieved through active wells that are one-dimensional lines (e.g. vertical,... 

    Feasibility study on application of the recent enhanced heavy oil recovery methods (VAPEX, SAGD, CAGD and THAI) in an iranian heavy oil reservoir

    , Article Petroleum Science and Technology ; Volume 35, Issue 21 , 2017 , Pages 2059-2065 ; 10916466 (ISSN) Heidary, S ; Dehghan, A. A ; Mahdavi, S ; Sharif University of Technology
    Abstract
    Enhanced oil recovery (EOR) methods assisted by gravity drainage mechanism and application of sophisticated horizontal wells bring new hope for heavy oil extraction. Variety of thermal and non-thermal EOR techniques inject an external source of energy and materials such as steam, solvent vapor, or gas through a horizontal well at the top of the reservoir to reduce in-situ heavy oil viscosity. So, the diluted oil becomes mobile and flows downwards by gravity drainage to a horizontal producer located at the bottom of the reservoir. In this paper, a sector model of an Iranian fractured carbonate heavy oil reservoir was provided to simulate and evaluate capability of some EOR techniques such as... 

    The effect of dispersed phase salinity on water-in-oil emulsion flow performance: A micromodel study

    , Article Industrial and Engineering Chemistry Research ; Volume 56, Issue 15 , 2017 , Pages 4549-4561 ; 08885885 (ISSN) Maaref, S ; Ayatollahi, S ; Rezaei, N ; Masihi, M ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    In this work, the effect of brine salinity on water-in-oil emulsion flow performance in porous media is studied as it imposes a significant challenge to oil production in the petroleum industry. A crude oil sample from an Iranian oilfield and synthetic brine with different salinities (40-140 g/L salt) are used. The results show that the emulsion viscosity and interfacial tension increase slightly with salinity, while they do not considerably affect the flow behavior. The emulsion stability analysis shows that larger w/o emulsion droplets are formed for higher brine salinity, which potentially block more pore spaces through straining and interception mechanisms. This phenomenon resulted in... 

    Environmental policy-making for persian gulf oil pollution: a future study based on system dynamics modeling

    , Article Energy Sources, Part B: Economics, Planning and Policy ; Volume 12, Issue 1 , 2017 , Pages 17-23 ; 15567249 (ISSN) Khajehpour, H ; Ahmady, M. A ; Hosseini, S. A ; Mashayekhi, A. N ; Maleki, A ; Sharif University of Technology
    Abstract
    Environmental degradation due to economic activities is a key challenge facing sustainable development. The fossil fuel production sector is a very polluting industry. In this research, the future trends of pollution accumulation in the region due to direct/indirect oily discharge into the semi-enclosed area of the Persian Gulf are studied. The purpose of the study was not only to alert policy-makers about potential future threats in the region but also to conduct a trial to develop potential solutions to these problems. Four different environmental cases were studied via the principle of system dynamic modeling simulation. The cases consisted of three situations: relaxed, simple policy, and... 

    Effect ­­­­­of ultrasonic irradiation treatment on rheological behaviour of extra heavy crude oil: A solution method for transportation improvement

    , Article Canadian Journal of Chemical Engineering ; Volume 95, Issue 1 , 2017 , Pages 83-91 ; 00084034 (ISSN) Rahimi, M. A ; Ramazani S. A, A ; Alijani Alijanvand, H ; Ghazanfari, M. H ; Ghanavati, M ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    The highly viscous property of heavy oil often causes problems in its transportation in pipelines. Mixing heavy oil with light oil as well as ultrasound treatment are viable solutions to this problem. In this study, extra heavy crude oil samples were first diluted with 0, 0.05, 0.1, and 0.15 mL/mL (0, 5, 10, and 15 vol%) of a light crude oil; then the mixture was irradiated by ultrasonic waves for 0, 5, 10, 15, and 20 min; finally the viscous shear functions of all mixtures was measured at different values of shear rate at different temperature levels. The results revealed that the minimum viscosity of the diluted extra heavy crude oil samples was obtained at 10 min of ultrasonic... 

    Comparison of the effect of temperature on asphaltene destabilisation in light and heavy live oils

    , Article International Journal of Oil, Gas and Coal Technology ; Volume 16, Issue 4 , 2017 , Pages 342-362 ; 17533317 (ISSN) Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    The main objective of this study is to investigate the effect of temperature on asphaltene destabilisation (precipitation/aggregation) in live oils at elevated pressure conditions. Here, the asphaltene related experiments were performed using solid detection systems, high pressure microscope, and high pressure-high temperature filtration apparatuses in two Iranian light and heavy live oils with different characteristics and stability. The obtained results were interpreted in terms of asphaltene onset pressure, size distribution and average diameter of the aggregates, fractal analysis of the aggregates structures, and the amount of asphaltene precipitation. As well, the results of the... 

    The effect of nanoparticles on spontaneous imbibition of brine into initially oil-wet sandstones

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 41, Issue 22 , 2019 , Pages 2746-2756 ; 15567036 (ISSN) Sobhani, A ; Ghasemi Dehkordi, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this paper, the effect of silica nanoparticles on oil production due to the spontaneous imbibition of brine into oil-wet sandstones has been studied. The imbibed fluids were NaCl 3 wt. % solutions containing various concentrations of nanoparticles and the recovered oil for each solution was compared. The results revealed that nanoparticles yielded more oil recovery. Nanofluid was used after brine imbibition, and the oil recovery increased from 17.8% to 40% while in the case of using the same nanofluid as the first imbibed fluid the oil recovery was 53%. Also, the results indicated that the oil recovery depends on nanoparticle concentrations. © 2019, © 2019 Taylor & Francis Group, LLC  

    Comparing the performance and recovery mechanisms for steam flooding in heavy and light oil reservoirs

    , Article Society of Petroleum Engineers- SPE Heavy Oil Conference ; Volume 1 , 2012 , Pages 28-36 ; 9781622761111 (ISBN) Bagheripour Haghighi, M ; Ayatollahi, S ; Shabaninejad, M ; Sharif University of Technology
    SPE  2012
    Abstract
    The concern over fossil energy shortage for the next decade leads to the extensive research activities in the area of enhanced oil recovery. Steam injection as one of well known EOR process has been used for about five decades to improve the oil production rate and recovery efficiency. Steam flooding is applied to heavy and extra-heavy oil reservoirs; however it could be used in light oil reservoirs in which water injection do not work effectively. Regardless of different performances, this method is an efficient EOR process for both heavy and light oil reservoirs. In this work, two separate numerical models were prepared to investigate steam flooding performance for the recovery of light... 

    Gas-oil relative permeability and residual oil saturation as related to displacement instability and dimensionless numbers

    , Article Oil and Gas Science and Technology ; Volume 65, Issue 2 , 2010 , Pages 299-313 ; 12944475 (ISSN) Rostami, B ; Kharrat, R ; Ghotbi, C ; Tabatabaie, S. H ; Sharif University of Technology
    2010
    Abstract
    Displacement experiments of the gas-oil system are performed on long core scale models by varying the petrophysical properties and flowing conditions. Experiments are conducted in situations where capillary, gravity and viscous forces are comparable. From oil production history and picture analysis, the threshold for the stability is determined. The experimental findings are comparable to the results of a gradient percolation theory. The effect of destabilized front velocity on relative permeability and residual saturation is investigated. The relative permeabilities determined by using analytical and numerical approaches indicate that higher displacement velocity leads to a higher gas... 

    Phase behavior and interfacial tension evaluation of a newly designed surfactant on heavy oil displacement efficiency; effects of salinity, wettability, and capillary pressure

    , Article Fluid Phase Equilibria ; Vol. 396, issue , June , 2015 , p. 20-27 ; ISSN: 03783812 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    This work aims to discuss the results of wide ranges of laboratory investigations to evaluate the performance of a newly-formulated surfactant for heavy oil reservoirs in order to improve the microscopic sweep efficiency after water flooding processes. In the first part, the specific behavior of the formulated surfactant including its salinity tolerance, interfacial tension, and optimum performance window was determined. Then, the application of surfactant solutions in real sandstone reservoir rocks was assessed for both oil-wet and water-wet cases. Besides, the effect of changing the capillary and viscous forces and interfacial tension on the residual phase saturations were characterized.... 

    Experimental investigation and evaluation of three-phase relative permeability models

    , Article Journal of Petroleum Science and Engineering ; Vol. 79, issue. 2-Jan , October , 2011 , p. 45-53 ; ISSN: 09204105 Masihi, M ; Javanbakht, L ; Bahaloo Horeh, F ; Rasaei, M. R ; Sharif University of Technology
    Abstract
    Petroleum production often involves simultaneous flow of three immiscible fluids through underground porous rock formation. In this work, we measure two- and three-phase relative permeabilities with which we examine the performance of various 3-phase relative permeability models. The rock-fluid systems used in these measurements are comprised of sandstone samples, oil (n-decane), water (Nacl, 6000. ppm) and gas (nitrogen). The measurements were carried out at 23 ± 1 °C and 5.44 MPa. Two- and three-phase relative permeability measurements were obtained using the steady-state technique. The three-phase experiments were conducted such that the flow rates of brine and gas were increased... 

    The optimization of gas allocation to a group of wells in a gas lift using an efficient Ant Colony Algorithm (ACO)

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, Issue. 11 , 2014 , Pages 1234-1248 ; ISSN: 15567036 Ghaedi, M ; Ghotbi, C ; Aminshahidy, B ; Sharif University of Technology
    Abstract
    When the reservoir energy is too low for the well to flow, or the production rate desired is greater than the reservoir energy can deliver, using some kind of artificial lift method to provide the energy to bring the fluid to the surface, seems to be necessary. Continuous flow gas lift is one of the most common artificial lift methods widely used in the oil industry during which, at appropriate pressure, gas is injected in a suitable depth into the tubing to gasify the oil column, and thus assist the production. Each well has an optimal point at which it will produce the most oil. In ideal conditions, at which there is no limitation in the total amount of available gas, a sufficient amount... 

    Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids

    , Article Energy and Fuels ; Vol. 28, issue. 1 , 2014 , pp. 423-430 ; ISSN: 08870624 Ehtesabi, H ; Ahadian, M. M ; Taghikhani, V ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Anatase and amorphous TiO2 nanoparticles were used to improve recovery of heavy oil from sandstone cores. Before performing core floods, the stability of nanoparticles at different salinities was tested using ζ potential and ultraviolet-visible (UV-vis) methods. While water recovered only 49% of the oil in the core flood experiments, 0.01% anatase structure solution recovered 80% of the oil after injecting two pore volumes at optimum conditions. To understand the mechanism responsible for improved recovery, contact angle measurements were performed on the rock surface before and after treatment with the nanoparticle solution. Contact angle measurements showed that the rock wettability... 

    Predicting oil price movements: A dynamic Artificial Neural Network approach

    , Article Energy Policy ; Vol. 68, issue , 2014 , p. 371-382 Godarzi, A. A ; Amiri, R. M ; Talaei, A ; Jamasb, T ; Sharif University of Technology
    Abstract
    Price of oil is important for the economies of oil exporting and oil importing countries alike. Therefore, insight into the likely future behaviour and patterns of oil prices can improve economic planning and reduce the impacts of oil market fluctuations. This paper aims to improve the application of Artificial Neural Network (ANN) techniques to prediction of oil price. We develop a dynamic Nonlinear Auto Regressive model with eXogenous input (NARX) as a form of ANN to account for the time factor. We estimate the model using macroeconomic data from OECD countries. In order to compare the results, we develop time series and ANN static models. We then use the output of time series model to... 

    Estimation of naturally fractured oil reservoir properties using the material balance method

    , Article Scientia Iranica ; Volume 21, Issue 3 , 2014 , Pages 781-791 ; ISSN: 10263098 Ebrahimi, N ; Jamshidi, S ; Gholinezhad, S ; Sharif University of Technology
    Abstract
    In fractured reservoirs, a large variation of permeability due to the presence of fractures leads to changes in the production mechanism compared to conventional reservoirs. Hence, an appropriate model with the ability to describe the reservoir properly can provide a more confident prediction of its future performance. One of the features of a representative model is the number and height of the matrix blocks. The determination of these two parameters is one of the decisive steps in the calculation of an accurate amount of oil production from these reservoirs. In fact, matrix height shows its effect as a gravity force, which is one of the driving mechanisms. If the matrix height is less than... 

    Assessing alternative options for allocating oil revenue in Iran

    , Article Energy Policy ; Volume 63 , 2013 , Pages 1207-1216 ; 03014215 (ISSN) Barkhordar, Z. A ; Saboohi, Y ; Sharif University of Technology
    2013
    Abstract
    The present paper focuses on medium-term effects of alternative windfall management strategies for a resource abundant country where the resource revenues are expected to last over a prolonged period. In particular, the trade-off between spending and saving is analyzed within the framework of a recursive dynamic computable general equilibrium model. The model is further validated against historical data available for 2001-2010. The total factor productivity is calculated endogenously in the model based on a function that reflects the changes in factor productivity. The results suggest that saving oil revenues, whether in an oil fund or through physical investment in domestic sectors, leads... 

    Application of fast-SAGD in naturally fractured heavy oil reservoirs: A case study

    , Article SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings, Manama ; Volume 3 , March , 2013 , Pages 1946-1953 ; 9781627482851 (ISBN) Hemmati Sarapardeh, A ; Hashemi Kiasari, H ; Alizadeh, N ; Mighani, S ; Kamari, A ; Baker Hughes ; Sharif University of Technology
    2013
    Abstract
    Steam injection process has been considered for a long time as an effective method to exploit heavy oil resources. Over the last decades, Steam Assisted Gravity Drainage (SAGD) has been proved as one of the best steam injection methods for recovery of unconventional oil resources. Recently, Fast-SAGD, a modification of the SAGD process, makes use of additional single horizontal wells alongside the SAGD well pair to expand the steam chamber laterally. This method uses fewer wells and reduces the operational cost compared to a SAGD operation requiring paired parallel wells one above the other. The efficiency of this new method in naturally fractured reservoir is not well understood.... 

    Experimental and numerical investigation of polymer flooding in fractured heavy oil five-spot systems

    , Article Journal of Petroleum Science and Engineering ; Volume 108 , 2013 , Pages 370-382 ; 09204105 (ISSN) Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    2013
    Abstract
    Microscopic and macroscopic displacements of polymer flooding to heavy oil at various levels of salinity and connate water saturation have been investigated. Both oil-wet and water-wet conditions in fractured five-spot micromodel systems, initially saturated with the heavy crude oil are utilized. The primary contribution is to examine the role of salinity, wettability, connate water, and fracture geometry in the recovery efficiency of the system. The microscopic results revealed that the increase in the connate water saturation decreases the oil recovery, independent of the wettability conditions. Moreover, the increase in salinity of the injected fluids lowers the recovery efficiency due to... 

    Application of biosurfactants to wettability alteration and IFT reduction in enhanced oil recovery from oil-wet carbonates

    , Article Petroleum Science and Technology ; Volume 31, Issue 12 , Jul , 2013 , Pages 1259-1267 ; 10916466 (ISSN) Biria, D ; Maghsoudi, E ; Roostaazad, R ; Sharif University of Technology
    2013
    Abstract
    To obtain potentially applicable microorganisms to an effective in situ microbial enhanced oil recovery operation, bacteria that were compatible with the harsh conditions of a petroleum reservoir were isolated from a crude oil sample. The application of an oil spreading technique showed that all of the isolates were capable of producing biosurfactants from both the glucose and crude oil as carbon sources. The secreted biosurfactants could at least reduce the surface tension 20 mN/m and for one of the isolates; the surface tension value dropped below 40 mN/m. In addition, the contact angle measurements revealed that the produced biosurfactants could effectively alter the wettability of the... 

    A new empirical correlation for predicting effective molecular diffusivity of gas-heavy oil-porous media systems

    , Article Special Topics and Reviews in Porous Media ; Volume 3, Issue 1 , 2012 , Pages 23-33 ; 21514798 (ISSN) Zamanian, E ; Mirjordavi, N ; Kazemeini, M ; Ghazanfari, M. H ; Sharif University of Technology
    2012
    Abstract
    Molecular diffusivity is an essential parameter for modeling of mass transfer in enhanced oil recovery processes. However, experimentally determined diffusivities for light gas-heavy oil systems in the presence of porous media are relatively rare. A few correlations are available in the literature that predict diffusivity of gases into heavy oil in presence of porous media. In this work the pressure-decay method was applied to obtain effective molecular diffusion of CO 2, CH 4 and N 2-heavy oil systems in both bulk and porous media systems at different temperatures. The diffusivity of gases in heavy oil was determined by matching the numerically calculated pressures to the measured data. A...