Loading...
Search for: oil-reservoirs
0.01 seconds
Total 100 records

    Well Placement optimization using hybrid optimization technique combined with fuzzy inference system

    , Article Petroleum Science and Technology ; Volume 31, Issue 5 , 2013 , Pages 481-491 ; 10916466 (ISSN) Darabi, H ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    Decision on the location of new wells through infill drilling projects is a complex problem that depends on the reservoir rock and fluid properties, well and surface facilities specifications, and economic measures. Conventional approach to address this is a direct optimization that uses the numerical flow simulation. However, this is computationally very extensive. In this study the authors use a hybrid genetic algorithm (HGA) optimization technique based on the genetic algorithm (GA) with helper functions based on the polytope algorithm and the neural network. This hybridization introduces hill-climbing into the stochastic search and makes use of proxies created and calibrated iteratively... 

    An experimental investigation of permeability impairment under dynamic flow conditions due to natural depletion in an Iranian oilfield

    , Article Petroleum Science and Technology ; Volume 31, Issue 3 , 2013 , Pages 250-261 ; 10916466 (ISSN) Khalifeh, M ; Bagherzadeh, H ; Bolouri, H ; Sharif University of Technology
    2013
    Abstract
    Asphaltene deposition is an issue that has received much attention since it has been shown to be the cause of major production problems. It leads to permeability reduction under the processes of natural depletion as well as hydrocarbon gas/CO2 injection. Though a great deal of researches have focused on studying permeability impairment in reservoir rocks, little is known about the asphaltene deposition mechanisms that control the permeability reduction for Iranian reservoirs. In this work, an experimental effort is made to investigate the permeability impairment of core samples of Iranian oil reservoirs. The experiments are performed on both sandstone and carbonate rock types at reservoir... 

    An experimental study on the applicability of water-alternating-co 2 injection in the secondary and tertiary recovery in one iranian reservoir

    , Article Petroleum Science and Technology ; Volume 30, Issue 24 , 2012 , Pages 2571-2581 ; 10916466 (ISSN) Motealleh, M ; Kharrat, R ; Gandomkar, A ; Khanamiri, H ; Nematzadeh, M ; Ghazanfari, M ; Sharif University of Technology
    2012
    Abstract
    The objective of this study was to experimentally investigate the performance of water-alternating gas (WAG) injection in one of Iran's oil reservoirs that encountered a severe pressure drop in recent years. Because one of the most appropriate studies to evaluate the reservoir occurs generally on rock cores taken from the reservoir, core samples drilled out of the reservoir's rock matrix were used for alternating injection of water and gas. In the experiments, the fluid system consisted of reservoir dead oil, live oil, Co 2, and synthetic brine; the porous media were a number of carbonate cores chosen from the oilfield from which the oil samples had been taken. All coreflood experiments were... 

    Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation

    , Article Energy and Fuels ; Volume 26, Issue 10 , June , 2012 , Pages 6186-6199 ; 08870624 (ISSN) Kord, S ; Miri, R ; Ayatollahi, S ; Escrochi, M ; Sharif University of Technology
    2012
    Abstract
    Oil production from asphaltenic oil reservoirs has always encountered difficulties, such as plugging and unpredictable fluid properties. To physically recognize the aspects of asphaltene deposition, several dynamic and static asphaltene deposition tests were designed and performed on one of the giant south Iranian oil reservoirs using dead and live crude oil and real core samples. Moreover, the effects of fluid velocity on the extent of damage were investigated. It was found that surface deposition of asphaltene particles is the main source of formation damages in the porous media and the resulting permeability impairment obeys an exponential behavior. All of the experiments confirm that... 

    Multivariate curve resolution alternating least-squares as a tool for analyzing crude oil extracted asphaltene samples

    , Article Energy and Fuels ; Volume 26, Issue 9 , 2012 , Pages 5663-5671 ; 08870624 (ISSN) Ghatee, M. H ; Hemmateenejad, B ; Sedghamiz, T ; Khosousi, T ; Ayatollahi, S ; Seiedi, O ; Sayyad Amin, J ; Sharif University of Technology
    ACS  2012
    Abstract
    Asphaltene deposition in the early stage of the oil reservoir life and later during any stimulation process emerges critical problems to the petroleum industry. Deposition of asphaltene aggregates raises strict problems in industries and demands markedly a practical and scientific knowledge of the mechanisms of aggregation and precipitation. Fluorescence emission spectroscopy has been widely used to illuminate the fundamental properties of crude oils and asphaltenes. It proposes analysis of some details of equilibrium, dynamic behavior, and aggregation composition of crude oil under specific condition. In this work, the fluorescence spectra of crude-oil extracted asphaltene samples were... 

    Nanotechnology-assisted EOR techniques: New solutions to old challenges

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; 2012 , Pages 382-396 ; 9781622761104 (ISBN) Ayatollahi, S ; Zerafat, M. M ; Sharif University of Technology
    SPE  2012
    Abstract
    Enhanced Oil Recovery techniques are gaining more attention worldwide as the proved oil reserves are declining and the oil price is hiking. Although many giant oil reservoirs in the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases, analyzing micro-scale multi-phase flow in the rock to the large scale tests and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR processes. Our past experiences on using nanotechnology to the upstream cases, especially EOR processes, revealed... 

    Investigation of the effect of water based nano-particles addition on hysteresis of oil and-water relative permeability curves

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; 2012 , Pages 267-277 ; 9781622761104 (ISBN) Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sherafati, M ; Mashayekhi, L ; Sharif University of Technology
    SPE  2012
    Abstract
    It has been shown that one kind of poly silicon particles with sizes ranging from 10-500 nm, can be used in oilfields to enhance the oil recovery of water injection by 15-20%. The contributing mechanism might be reducing the interfacial tension which appears through improving relative permeability of the oil-phase. However, fundamental understanding of how hysteretic behavior of relative permeability curves affected by nanosilica particles remains a topic of debate in the literature. In this study, water as well as water dispersed nanosilica particles floods was performed on sandstone rock sample saturated by light crude oil supplied from one of Iranian oil reservoir, and the relative... 

    Comparing the performance and recovery mechanisms for steam flooding in heavy and light oil reservoirs

    , Article Society of Petroleum Engineers- SPE Heavy Oil Conference ; Volume 1 , 2012 , Pages 28-36 ; 9781622761111 (ISBN) Bagheripour Haghighi, M ; Ayatollahi, S ; Shabaninejad, M ; Sharif University of Technology
    SPE  2012
    Abstract
    The concern over fossil energy shortage for the next decade leads to the extensive research activities in the area of enhanced oil recovery. Steam injection as one of well known EOR process has been used for about five decades to improve the oil production rate and recovery efficiency. Steam flooding is applied to heavy and extra-heavy oil reservoirs; however it could be used in light oil reservoirs in which water injection do not work effectively. Regardless of different performances, this method is an efficient EOR process for both heavy and light oil reservoirs. In this work, two separate numerical models were prepared to investigate steam flooding performance for the recovery of light... 

    Macroscopic recovery mechanisms of in-situ combustion process in heavy oil fractured systems: Effect of fractures geometrical properties and operational parameters

    , Article Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2012, OGWA - EOR: Building Towards Sustainable Growth ; Volume 2 , 2012 , Pages 593-617 ; 9781622760473 (ISBN) Fatemi, S. M ; Kharrat, R ; Vossoughi, S ; Ghotbi, C ; Sharif University of Technology
    SPE  2012
    Abstract
    The In-Situ Combustion (ISC) as a thermal EOR process has been studied deeply in heavy oil reservoirs and is a promising method for certain non-fractured sandstones. However, its feasibility in fractured carbonates remained questionable. The aim of the present work was to understand the recovery mechanisms of ISC in fractured models and to evaluate the effect of fractures geometrical properties such as orientation, density, location and networking on the ISC recovery performance. Combustion parameters of a fractured low permeable carbonate heavy oil reservoir in Middle East called KEM; applied to simulation study. Simulator has been validated with KEM combustion tube experimental data and... 

    A comparative study on WAS, SWAS, and solvent-soak scenarios applied to heavy-oil reservoirs using five-spot glass micromodels

    , Article Journal of Canadian Petroleum Technology ; Volume 51, Issue 5 , 2012 , Pages 383-392 ; 00219487 (ISSN) Farzaneh, S. A ; Dehghan, A. A ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    In this work, a series of solvent- and water-injection scenarios were conducted on horizontal five-spot glass micromodels that were saturated initially with heavy oil. Sandstone and limestone rock look-alike and network patterns with different pore structures were used in the experiments. The results show that the ultimate oil recovery of a water-alternating-solvent (WAS) scheme was greater than that of a simultaneously water-alternating-solvent (SWAS) scheme, and the efficiency of a solvent-soak scheme also offers a greater recovery. Likewise, the WAS scheme resulted in greater oil recovery when compared with continuous solvent injection (CSI), with the same amount of solvent consumption.... 

    Experimental investigation of matrix wettability effects on water imbibition in fractured artificial porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 86-87 , 2012 , Pages 165-171 ; 09204105 (ISSN) Rezaveisi, M ; Ayatollahi, S ; Rostami, B ; Sharif University of Technology
    Abstract
    Spontaneous water imbibition into the matrix blocks is known as the main mechanism for increased oil recovery from naturally fractured oil reservoirs. The rate of oil recovery and its ultimate value is mostly affected by wettability of the rocks and their pore structure. Oil viscosity also greatly influences the rate of oil recovery. A novel experimental model was utilized to study the imbibition mechanism under different wettability conditions. Matrix blocks made from different grain types and size distributions of glass beads were saturated with two different types of synthetic oil, to mimic the oil-saturated matrixes. The wetting characteristic of the models used in this study were... 

    An experimental investigation of foam for gas mobility control in a low-temperature fractured carbonate reservoir

    , Article Petroleum Science and Technology ; Volume 30, Issue 10 , 2012 , Pages 976-985 ; 10916466 (ISSN) Gandomkar, A ; Kharrat, R ; Motealleh, M ; Khanamiri, H. H ; Nematzadeh, M ; Ghazanfari, M. H ; Sharif University of Technology
    2012
    Abstract
    This work concerns the experimental investigation of surfactant alternating CO 2 injection in carbonate rocks. The core samples provided from a low-temperature fractured light oil reservoir, located in southwest Iran. The experiments were designed to observe the effect of CO 2-foam injection on gas mobility and oil recovery at different surfactant concentrations. The core samples were initially saturated with synthetic/field brine, 5,000 ppm, and then flooded with live oil to reach connate water saturation at reservoir condition, 115F and 1,700 psia. The commercial surfactant used was sodium lauryl sulfate as an anionic surfactant. The results of this work, along with field-scale simulation... 

    Experimental investigation of asp flooding in fractured heavy oil five-spot systems

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; 2012 , Pages 3924-3928 ; 9781629937908 (ISBN) Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    Although alkaline-surfactant-polymer flooding is proved to be efficient for oil recovery from heavy oil reservoirs, the displacements mechanism/efficiency of this process in fractured systems needs to more discussion, especially in five-spot patterns. In this work, several ASP flooding test were performed on fractured micromodels which were initially saturated with heavy oil at constant flow rate and different fracture geometrical characteristics conditions. The ASP solutions are constituted from 5 polymers i.e. four synthetic polymers include three hydrolyzed polyacrylamide with different molecular weight as well as a non-hydrolyzed polyacrylamide and a biopolymer, 2 surfactants i.e. a... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore... 

    Experimental investigation of CO2 WAG injection to light crude oil in near miscible conditions

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; 2012 , Pages 3914-3918 ; 9781629937908 (ISBN) Shahrokhi, O ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    This work concerns with experimental investigation of CO2 WAG injection to light crude oil in near miscible conditions which has been rarely attended in the available literature. Here, several core flood experiments at three constant injection rates and four WAG ratios are conducted on sandstone rocks saturated with light crude oil in presence of saline water. The results showed that higher injection rate has a better performance regarding oil recovery for smaller PVs of injected fluids, while lower injection rate showed higher ultimate recovery for a 30% increase in injected PVs. Secondary continuous gas injection showed a superior performance than all the other WAG injections in different... 

    Toe-to-heel air injection: Investigation of the effect of fractures geometrical properties on process performance

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 33, Issue 22 , Sep , 2011 , Pages 2067-2077 ; 15567036 (ISSN) Fatemi, S. M ; Kharrat, R ; Ghotbi, C ; Sharif University of Technology
    Abstract
    Toe to heel air injection has been studied on non-fractured sandstone models and is found to be a promising enhanced oil recovery method for certain heavy oil reservoirs, such as those in Canada, but its applicability on fractured reservoirs, such as those in the Middle East, is not investigated yet. The objective of this article is to evaluate the effect of fractures geometrical parameters, such as fracture density, orientation, and location, on the performance of the process in laboratory scale. Simulation results showed that toe-to-heel air injection is more applicable on highly networked fractured reservoirs, such as those that occur in Persian Gulf coast compared to lower density... 

    The assessment of fracture geometrical properties on the performance of conventional in situ combustion

    , Article Petroleum Science and Technology ; Volume 29, Issue 6 , Feb , 2011 , Pages 613-625 ; 10916466 (ISSN) Fatemi, S. M ; Kharrat, R ; Ghotbi, C ; Sharif University of Technology
    Abstract
    The aim of the present work is to evaluate the effect of fractures geometrical properties such as orientation, density, location, and networking on the conventional fire flooding (CFF) process performance through simulation analysis. Combustion parameters of a fractured low-permeable carbonate heavy oil reservoir in Iran called Kuh-E-Mond (KEM); applied for simulation study and simulator has been validated with KEM combustion tube experimental data. The validated model was modified to study CFF in 3D semi-scaled combustion cells. Simulation results confirmed that CFF is more feasible in the case of densely fractured reservoirs such as those in the Middle East  

    Experimental investigation of water alternating CH4-CO2 mixture gas injection to light oil reservoirs

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; June , 2012 , Pages 3919-3923 ; 9781629937908 (ISBN) Ghazanfari, M. H. G. H ; Alizadeh, A
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    In this work effect of composition changes of injection gas, CH4 + CO2, on the performance of immiscible WAG injection in light oil, 41 oAPI, which has been rarely attended in the available literature is investigated. Presence of CO2 helps to reduce the MMP of CH4 significantly. Core flood experiments are conducted at reservoir conditions and fixed flow rate of 0.5cc/min on a sandstone sample with the brine concentration of 5000 ppm, and the influence of injection gas composition as well as WAG ratio on oil recovery is investigated. Different mole percents of methane in mixture, 0%, to 100% are examined, and the tests continued to ten alternate cycles with a slug size of 0.1 pore volumes and... 

    Optimal conditions for immiscible recycle gas injection process: A simulation study for one of the Iranian oil reservoirs

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1407-1414 ; 10263098 (ISSN) Mohammadi, S ; Kharrat, R ; Khalili, M ; Mehranfar, M ; Sharif University of Technology
    2011
    Abstract
    Immiscible gas injection is one of the most common enhanced oil recovery methods used under various reservoir conditions. In this work, the immiscible recycle gas injection, as an EOR scenario for improving recovery efficiency in one of the south-west Iranian oil reservoirs, is simulated by a commercial simulator, ECLIPSE. The reservoir fluid is light oil, with an API of 43. The oil bearing formations are carbonate, and so a dual porosity/dual permeability behavior was chosen for better representation of the fracture system. Different sensitivity analyses with respect to several parameters like the number and location of injection/production wells, production/injection rate, completion... 

    The effect of fractures' geometrical properties on the recovery mechanism of the top-down in situ combustion process

    , Article Petroleum Science and Technology ; Volume 30, Issue 2 , Feb , 2011 , Pages 147-158 ; 10916466 (ISSN) Fatemi, S. M ; Kharrat, R ; Sharif University of Technology
    2011
    Abstract
    The top-down in situ combustion (ISC) involves the stable propagation of the combustion front from the top vertical injector to the bottom horizontal producer. Apart from laboratory studies in conventional sandstones, no application of the process in fractured carbonates has been addressed yet. The authors modified a successful combustion tube history matched model of an Iranian low-permeable heavy oil reservoir called Kuh-E-Mond to investigate the feasibility of ISC in fractured carbonate reservoirs mimicking block-scale combustion cells. Effects of fractured geometrical properties such as orientation, location, extension, density, spacing, and dispersion were considered. Results confirmed...