Loading...
Search for: oil-well
0.02 seconds
Total 321 records

    Conceptual study on dynamic response of semi-submersible

    , Article Proceedings of the Institution of Civil Engineers: Maritime Engineering ; 2021 ; 17417597 (ISSN) Tabeshpour, M. R ; Hajnoruzi, F ; Sharif University of Technology
    ICE Publishing  2021
    Abstract
    Hydrodynamic analysis of semi-submersible offshore structures has been the topic of many researches performed numerically and experimentally in the past. In this paper, the effect of structure alignment and mooring lines on dynamic behaviour of semi-submersible platforms has been taken into account. The contribution of pitch and roll in heave motion of side points is also investigated. Mooring lines are connected to semi-submersible at sides and therefore total displacement of side points is related to total displacement of mooring lines and total tension as well. A three dimensional boundary element model of Amirkabir platform in Caspian Sea is implemented using boundary element method... 

    Vortex shedding modes around oscillating non-uniform double heave plates

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 235, Issue 2 , 2021 , Pages 558-569 ; 14750902 (ISSN) Abazari, A ; Alvandi, M ; Behzad, M ; Thiagarajan, K. P ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Multiple co-axial heave plates of uniform geometry are attached to offshore platforms for inducing damping and added mass. These effects generally decrease the magnitude of the dynamic response of the platform under applied environmental excitation forces. When spacing between heave plates is decreased the damping and added mass performance are altered due to their strong vortex interaction. A new non-uniform plate configuration is proposed that may create different hydrodynamic characteristics. The modes of vortex shedding around plate edges in a non-uniform arrangement under forced harmonic oscillation are investigated via the CFD method. Furthermore, a new simplified formula for the total... 

    Hydrodynamic damping enhancement by implementing a novel combined rigid-elastic heave plate

    , Article Journal of Marine Science and Technology (Japan) ; Volume 26, Issue 1 , 2021 , Pages 216-232 ; 09484280 (ISSN) Abazari, A ; Behzad, M ; Thiagarajan, K ; Sharif University of Technology
    Springer Japan  2021
    Abstract
    Heave plates are structural components used for reducing the vibrations caused by environmental forces on marine and offshore structures by changing the hydrodynamic properties. The fact that the added mass increase via heave plates does not always lead to the structural response reduction underscores the role of damping in maintaining the vibration amplitude within allowable limits. In the present experimental study, a novel combined rigid-elastic design is used to improve the damping through the velocity increase in the elastic part and added mass creation in the central rigid part. The desired percentage of total added mass and damping can be adjusted by changing the rigid-to-elastic... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    Vortex shedding modes around oscillating non-uniform double heave plates

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 235, Issue 2 , 2021 , Pages 558-569 ; 14750902 (ISSN) Abazari, A ; Alvandi, M ; Behzad, M ; Thiagarajan, K. P ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Multiple co-axial heave plates of uniform geometry are attached to offshore platforms for inducing damping and added mass. These effects generally decrease the magnitude of the dynamic response of the platform under applied environmental excitation forces. When spacing between heave plates is decreased the damping and added mass performance are altered due to their strong vortex interaction. A new non-uniform plate configuration is proposed that may create different hydrodynamic characteristics. The modes of vortex shedding around plate edges in a non-uniform arrangement under forced harmonic oscillation are investigated via the CFD method. Furthermore, a new simplified formula for the total... 

    Hydrodynamic damping enhancement by implementing a novel combined rigid-elastic heave plate

    , Article Journal of Marine Science and Technology (Japan) ; Volume 26, Issue 1 , 2021 , Pages 216-232 ; 09484280 (ISSN) Abazari, A ; Behzad, M ; Thiagarajan, K ; Sharif University of Technology
    Springer Japan  2021
    Abstract
    Heave plates are structural components used for reducing the vibrations caused by environmental forces on marine and offshore structures by changing the hydrodynamic properties. The fact that the added mass increase via heave plates does not always lead to the structural response reduction underscores the role of damping in maintaining the vibration amplitude within allowable limits. In the present experimental study, a novel combined rigid-elastic design is used to improve the damping through the velocity increase in the elastic part and added mass creation in the central rigid part. The desired percentage of total added mass and damping can be adjusted by changing the rigid-to-elastic... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation

    , Article Journal of Molecular Liquids ; January , 2021 ; 01677322 (ISSN) Golmohammadi, M ; Mohammadi, S ; Mahani, H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    Oil polarity is an important property impacting the efficiency of low salinity waterflooding (LSWF). It directly affects fluid/fluid and rock/fluid interactions, controlling the interfacial properties and forces. However, the current findings in the literature on the effect of concentration of polar components on oil recovery by LSWF are contradictory. Therefore, the main objective of this paper is to investigate how the type of non-polar fractions and the concentration of acidic polar oil constituents change the trapped oil saturation at the pore-scale during LSWF. In this regard, we conducted a series of microfluidics LSWF experiments in both secondary and tertiary modes, using clay-free... 

    Effect of brine salinity and hydrolyzed polyacrylamide concentration on the Oil/Brine and Brine/Rock Interactions: Implications on enhanced oil recovery by hybrid low salinity polymer flooding in sandstones

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Amiri, M ; Fatemi, M ; Biniaz Delijani, E ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The main idea behind the application of Low salinity polymer flooding (LSPF) enhanced oil recovery (EOR) method is that diluted brine improves the oil recovery by wettability alteration from oil-wet (OW) towards water-wet (WW) condition, while polymer enhances the mobility of the displacing phase. However the possible effect of polymer on the fluid/fluid and fluid/rock interactions are not investigated systematically in the literature. The main objective of the present reserach is to examine the possible effect of hybrid application of low-salinity and polymer on the brine/rock and brine/oil interfaces properties. Formation water (FW) and sea water (SW) and its two different dilutions, i.e.... 

    Experimental study and surface complexation modeling of non-monotonic wettability behavior due to change in brine salinity/composition: Insight into anhydrite impurity in carbonates

    , Article Journal of Molecular Liquids ; Volume 365 , 2022 ; 01677322 (ISSN) Madadi Mogharrab, J ; Ayatollahi, S ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Wettability alteration as the main mechanism of improved oil recovery in carbonates during low salinity/engineered water flooding (LS/EWF) is a complex phenomenon due to high heterogeneity of rock. During LS/EWF, wettability changes when electrochemical interactions at carbonate-brine interface happen. Anhydrite impurity in carbonates is one of the most important parameters affecting the electrochemical interactions at the rock-brine interface and the wettability alteration process. Therefore, the success of LS/EWF in carbonate reservoirs lies in perceiving the role of impurities such as anhydrite, from a geochemical and dissolution point of view. Modified flotation tests (MFT) were... 

    A Review on chemical sand production control techniques in oil reservoirs

    , Article Energy and Fuels ; 2022 ; 08870624 (ISSN) Saghandali, F ; Baghban Salehi, M ; Hosseinzadehsemnani, R ; Moghanloo, R. G ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    This review aims to bring together the studies on petroleum reservoirs' sand production control in a comprehensive guide for the researcher to compare various methods for the chemical consolidation of sand. Sand production can be considered one of the major challenges in the petroleum production industry, causing severe operational issues. This study introduces various methods to control and prevent sand production in petroleum wells and evaluates their advantages and performance in tabular form. The use of chemical procedures is considered to be more efficient in counteracting the production and migration of sand. Various chemicals and polymers have been proposed for this purpose. These... 

    Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 137 , 2016 , Pages 134-143 ; 09204105 (ISSN) Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Gas injection process for more oil recovery and in particular CO2 injection is well-established method to increment oil recovery from underground oil reservoirs. CO2 sequestration which takes place during this enhanced oil recovery (EOR) method has positive impact on reducing the greenhouse gas emission which causes global warming. Direct gas injection into depleted oil reservoirs, encounters several shortcomings such as low volumetric sweep efficiency, early breakthrough (BT) and high risk of gas leakage in naturally fractured carbonate oil reservoirs. Carbonated water injection (CWI) has been recently proposed as an alternative method to alleviate the problems associated with gas... 

    Energy transfer in a liquid filled elemental passage of a porous medium for permeability enhancement due to pulsations of a vapor bubble

    , Article Mechanika ; Volume 22, Issue 1 , 2016 , Pages 25-30 ; 13921207 (ISSN) Rambarzin, F ; Shervani Tabar, M. T ; Taeibi Rahni, M ; Tabatabaei Nejad, S. A ; Sharif University of Technology
    Kauno Technologijos Universitetas  2016
    Abstract
    In this paper, a novel method which has been proposed during the last decade for increasing of the permeability of porous media of petroleum reservoirs by transferring of energy via ultrasound waves is investigated numerically. Increasing of permeability of porous media of petroleum reservoirs results in enhancing of oil recovery. This technique is based on the idea of transferring of energy to the liquid filled porous media via the ultrasound waves and consequently producing of pulsating vapor bubbles. The generated vapor bubbles transfer the energy of ultrasound waves in the liquid filled passages of a porous medium through velocity and pressure fields in the liquid domain and in turn... 

    A review of global gas flaring and venting and impact on the environment: Case study of Iran

    , Article International Journal of Greenhouse Gas Control ; Volume 49 , 2016 , Pages 488-509 ; 17505836 (ISSN) Soltanieh, M ; Zohrabian, A ; Gholipour, M. J ; Kalnay, E ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    After a brief review of the global gas flaring and venting in oil industries including the emission of air pollutants and greenhouse gases and the amount of energy resources wasted, the focus is on Iran as a major oil producing and the world's third largest gas flaring country. Gas flaring is also practiced in natural gas industries, petroleum refining and petrochemical plants, although the level of emission is very low compared with emissions from oil production. The historical emission of these gases globally and Iran specifically, geographic location of emission sources, composition of gases, environmental impacts of gas flaring and the current and future projects to mitigate emissions... 

    A new semi-analytical modeling of steam-assisted gravity drainage in heavy oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 69, Issue 3-4 , 2009 , Pages 261-270 ; 09204105 (ISSN) Alali, N ; Pishvaie, M. R ; Jabbari, H ; Sharif University of Technology
    Abstract
    Thermal recovery by steam injection has proven to be an effective means of recovering heavy oil. Forecasts of reservoir response to the application of steam are necessary before starting a steam drive project. Thermal numerical models are available to provide forecasts. However, these models are expensive and consume a great deal of computer time. An alternative to numerical modeling is to use a semi-analytical model. The objective of the current study was to investigate thermal applications of horizontal wells for displacement and gravity drainage processes using analytical modeling as well as reservoir simulation. The main novelties presented in the paper are: a) the transient temperature... 

    Investigating the effects of rock and fluid properties in Iranian carbonate matrix acidizing during pre-flush stage

    , Article Journal of Petroleum Science and Engineering ; Volume 166 , 2018 , Pages 121-130 ; 09204105 (ISSN) Karimi, M ; Shirazi, M. M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Acidizing of carbonate oil-wet rocks saturated with oil and saline formation water is subjected failure in some cases due to acid-induced damage such as sludge and emulsion formations. This condition may also lead to mineral precipitation, oil film barrier between acid and rock and diversion chemical malfunctions. Therefore, pre-flush process has been proposed as one of the most efficient stage for oil-wells matrix acidizing to reduce these challenges significantly. Besides, the pre-flush stage would result in more clean rock as the reservoir fluids are pushed back from the near wellbore regions, restoring rock wettability to more water wet state, preventing direct acid-oil contact and... 

    Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Ershadnia, R ; Amooie, M. A ; Shams, R ; Hajirezaie, S ; Liu, Y ; Jamshidi, S ; Soltanian, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A thorough understanding and accurate prediction of non-Newtonian fluid flow dynamics in rotating annular media are of paramount importance to numerous engineering applications. This is in particular relevant to oil and gas industry where this type of flow could occur during, e.g., drilling, well completion, and enhanced oil recovery scenarios. Here, mathematically we report on physical-based (numerical) and data-driven (intelligent) modeling of three-dimensional laminar flow of non-Newtonian fluids driven by axial pressure gradient in annular media that consist of a coaxially rotating inner cylinder. We focus on the dynamics of pressure loss ratio (PLR)—the ratio of total pressure loss in... 

    A new multiphase and dynamic asphaltene deposition tool (MAD-ADEPT) to predict the deposition of asphaltene particles on tubing wall

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Naseri, S ; Jamshidi, S ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As expounded, the precipitation and deposition of asphaltene particles in pipelines has been proved to be the most challenging flow assurance problem due to its unknown and complex behaviors. In this work, a new multicomponent, multiphase and dynamic tool was developed to model the aggregation and deposition of asphaltene particles in a bulk medium. The multiphase and dynamic asphaltene deposition tool, shortened as MAD-ADEPT is, in fact, a modified version of the previously developed ADEPT. The new tool was developed to make the asphaltene deposition and aggregation concepts in oil production wells more predictable. To tackle the complexity of the asphaltene problem, a bespoke algorithm was... 

    Experimental study of the relationship between fracture initiation toughness and brittle crack arrest toughness predicted from small-scale testing

    , Article Theoretical and Applied Fracture Mechanics ; Volume 110 , 2020 Taylor, J ; Mehmanparast, A ; Kulka, R ; Moore, P ; Xu, L ; Farrahi, G. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    It is vital to prevent brittle cracks in large structures. This is particularly important for a number of industry sectors including offshore wind, Oil & Gas, and shipbuilding where structural failure risks loss of human life and loss of expensive assets. Some modern steels exhibit high Charpy energy – i.e. high initiation fracture toughness, but poor resistance to crack propagation – i.e. low crack arrest toughness. The correlation between initiation and arrest toughness measured through small-scale testing is investigated in five different steels, which include S355 structural steel (with two different thicknesses), X65 pipeline steel, two high strength reactor pressure vessel steels and... 

    A semi-active SMA-MRF structural stability element for seismic control in marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Zareie, S ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The stability and integrity of structures under indeterminant external loadings, particularly earthquakes, is a vital issue for the design and safe operation of marine and offshore structures. Over the past decades, many structural control systems, such as viscous-based systems, have been developed and embedded in marine and offshore structures, particularly oil platforms to maintain the stability and mitigate the seismic hazards. Rapid improvement in intelligent materials, including shape memory alloys (SMAs) and Magnetorheological fluid (MRF), have led to the design and development of efficient structural control elements. The present work aims to establish a framework for the structural...