Loading...
Search for: oil-well
0.012 seconds
Total 321 records

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Multi model robust control design for a floating offshore variable speed wind turbine with tension leg platform

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Ghorbani Shektaei, S. R ; Sadati, N ; Member, IEEE ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presents a multi-model robust control (MMRC) design for an offshore variable speed wind turbine with tension leg platform. The proposed control scheme covers the model uncertainty in the above rated wind speed, and it provides a reliable control for power regulation while minimizing the mechanical loads on the wind turbine structure. For this purpose, the above rated wind speed region is divided into several wind speed groups, and a set of linearized models are obtained from the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) simulator for various mean wind speeds of each group. Using Weibull wind speed distribution, a nominal model with additive uncertainty is generated... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore... 

    Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 82, Issue 1 , 2011 , Pages 33-39 ; 09277765 (ISSN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Soleimani, M ; Jamshidnejad, Z ; Sharif University of Technology
    Abstract
    The potential of an indigenous bacterial strain isolated from an Iranian oil field for the production of biosurfactant was investigated in this study. After isolation, the bacterium was characterized to be Paenibacillus alvei by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to lower the surface tension of media to 35. mN/m. Accordingly, thin layer chromatography (TLC) and FT-IR has been carried out to determine compositional analysis of the produced biosurfactant. After all the tests related to characterization of the biosurfactant produced by the isolated bacterium, it was characterized as lipopeptide derivative. The combination of... 

    Phase behavior and interfacial tension evaluation of a newly designed surfactant on heavy oil displacement efficiency; effects of salinity, wettability, and capillary pressure

    , Article Fluid Phase Equilibria ; Vol. 396, issue , June , 2015 , p. 20-27 ; ISSN: 03783812 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    This work aims to discuss the results of wide ranges of laboratory investigations to evaluate the performance of a newly-formulated surfactant for heavy oil reservoirs in order to improve the microscopic sweep efficiency after water flooding processes. In the first part, the specific behavior of the formulated surfactant including its salinity tolerance, interfacial tension, and optimum performance window was determined. Then, the application of surfactant solutions in real sandstone reservoir rocks was assessed for both oil-wet and water-wet cases. Besides, the effect of changing the capillary and viscous forces and interfacial tension on the residual phase saturations were characterized.... 

    Experimental determination of equilibrium interfacial tension for nitrogen-crude oil during the gas injection process: The role of temperature, pressure, and composition

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 11 , September , 2014 , p. 3461-3469 ; ISSN: 00219568 Hemmati-Sarapardeh, A ; Ayatollahi, S ; Zolghadr, A ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Nitrogen has emerged as a competitive gas injection alternative for gas-based enhanced oil recovery processes in the past two decades. The injection of nitrogen into the reservoirs has improved the oil recovery efficiency in various oil reservoirs from heavy to volatile oils. As it is known, interfacial tension (IFT) plays a key role in any enhanced oil recovery process, particularly gas injection processes; therefore, its accurate determination is crucial for the design of any gas injection process especially at reservoir condition. In this study, an axisymmetric drop shape analysis (ADSA) was utilized to measure the equilibrium IFTs between crude oil and N2 at different temperature levels... 

    Dynamic optimization of water flood reservoirs with the variational approach

    , Article Petroleum Science and Technology ; Vol. 32, issue. 3 , Dec , 2013 , p. 289-296 ; ISSN: 10916466 Kashkooli ,S. B ; Masihi, M ; Pishvaei, M. R ; Sharif University of Technology
    Abstract
    Optimization of any production operation is a tool for increasing production rates and reducing production costs. Water flooding is one of the techniques that frequently be used to increase oil recovery after primary depletion. A methodology for optimizing the production by using the net present value of a heterogeneous reservoir under water flooding has been presented, which is based on controlling the bottomhole pressures of the production wells, using smart well technology. For this purpose, a numerical flow simulator is coupled with an optimization program. The technique was implemented on a synthetic two dimensional oil reservoir with heterogeneous permeability. This optimization... 

    Effect of time and temperature on crude oil aging to do a right surfactant flooding with a new approach

    , Article Proceedings of the Annual Offshore Technology Conference ; Vol. 2, issue , 2014 , p. 1136-1142 ; ISSN: 01603663 ; ISBN: 9781632663870 Heidari, M. A ; Habibi, A ; Ayatollahi, S ; Masihi, M ; Ashoorian, S ; Sharif University of Technology
    Abstract
    Dilute Surfactant flooding has been recognized as one of the significant processes in chemical flooding. Many oil reservoirs became appropriate candidates for surfactant/water flooding when screening criteria was developed. Injected surfactant tried to mobilize the residual oil that was trapped in interstice. The main contributing mechanism to enhance oil recovery by surfactant flooding was defined as rock wettability alteration. Wettability is one of the substantial parameters to choose the best approach for a successful surfactant flooding in which tiny change in wettability will lead to improve oil recovery fundamentally. In this experimental study the effect of different aging time and... 

    Simultaneous/sequential alkaline-surfactant-polymer flooding in fractured/non-fractured carbonate reservoirs

    , Article Canadian Journal of Chemical Engineering ; Vol. 92, issue. 5 , May , 2014 , p. 918-927 ; ISSN: 00084034 Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Alkaline-Surfactant-Polymer flooding is one of the most novel chemical enhanced oil recovery methods in the petroleum industry. This method has attracted interest due to its remarkable advantages. In this work, a series of ASP floods are conducted on fractured/non-fractured carbonate rocks. The performance of the tests was investigated by various ASP floods consisting of five types of polymers, two surfactants and one common alkaline. ASP was flooded simultaneously and sequentially in four defined scenarios after water flooding. The results showed that although using hydrolysed polymers increases the recovery factor in the fractured medium, sulfonated polymers increase oil recovery even more... 

    Phase behavior modeling of asphaltene precipitation for heavy crudes: A promising tool along with experimental data

    , Article International Journal of Thermophysics ; Vol. 33, issue. 12 , December , 2012 , p. 2251-2266 ; ISSN: 0195928X Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Fadaei, S ; Sharif University of Technology
    Abstract
    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of... 

    Investigation into the capability of a modern decline curve analysis for gas condensate reservoirs

    , Article Scientia Iranica ; Vol. 18, issue. 3 C , June , 2011 , p. 491-501 ; ISSN: 10263098 Sadeghi Boogar, A ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (Arps and Fetkovich) to modern (for the variation of operating conditions at the wellbore). The application of these techniques for analysis of the production data of a gas condensate reservoir may not yield reliable answers due to the fact that the flow of fluid in gas condensate reservoirs is not single-phase. This paper presents the treatment of a modern method of production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). For this purpose, a single-phase... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Vol. 50, issue. 3 , March , 2011 , p. 65-74 Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 11 , 2014 , pp. 3624-3634 ; ISSN: 00219568 Lashkarbolooki, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Abstract
    The use of adjusted/optimized saline water categorized into two different classes namely smart water (SW) and low salinity (LoSal) water injection has been proposed for more oil recovery from specific types of oil reservoirs. There are possible mechanisms concerning SW flooding that have been proposed in the literature, some of them are still subject to more examination. In this study, an experimental investigation is performed to determine the influence of type and amount of salt to the surface properties including interfacial tension (IFT) and contact angle (CA) of aqueous solution + acidic and asphaltenic crude oil + carbonate rock systems. For this purpose, the concentration of different... 

    Real time optimization of a natural gas lift system with a differential evaluation method

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 3 , 2014 , pp. 309-322 ; ISSN: 15567036 Frooqnia, A ; Pishvaie, M. R ; Aminshahidy, B ; Sharif University of Technology
    Abstract
    This article presents a method for optimizing and controlling an oil production system using a natural gas lift concept. Ever increasing development of Smart Well technology and various applications of down-hole monitoring and controlling instruments along with new methods of data acquisition/transmission make it possible for the natural gas lift system to be controlled and optimized more effectively and faster than before. With this technology it is possible to monitor the down-hole conditions of gas and oil zones and to control the inflow valves in gas and oil zones. In this work, a proportional integral differential feedback controller has been used to smartly control the entrance of gas... 

    Drilling optimization based on a geomechanical analysis using probabilistic risk assessment, a case study from offshore Iran

    , Article Rock Engineering and Rock Mechanics: Structures in and on Rock Masses - Proceedings of EUROCK 2014, ISRM European Regional Symposium ; 2014 , pp. 1415-1422 ; ISBN: 9781138001497 Rafieepour, S ; Jalalifar, H ; Sharif University of Technology
    Abstract
    In offshore Iran, wellbore instability is quite common and the main cause for most of problems during drilling operations. In this study, the existing relevant logs, drilling and other data from offset well were analyzed and integrated to construct a precise Mechanical Earth Model (MEM) describing pore pressure, stress magnitudes and orientation, and formation mechanical properties of the South Pars Gas field. Then, the constructed MEM was refined and calibrated using the existing caliper, image logs, rock mechanical core test and drilling data and through history matching to constrain and reduce the uncertainties associated with limitations and availability of the existing data. Using the... 

    Nonlinear dynamic analysis of TLP surge motion using homotopy perturbation method

    , Article Ships and Offshore Structures ; Vol. 9, issue. 6 , May , 2014 , p. 569-577 Tabeshpour, M. R ; Shoghi, R ; Sharif University of Technology
    Abstract
    Tension leg platforms (TLPs) are well-known structures for oil exploitation in deep water. One of the current issues in compliant structures in the sea is variation in frequency and structural response due to a nonlinear parameter in the equation of motion. Variation of frequency is important in fatigue life study of tethers. A perturbation method is used in contrast to the traditional methods. This method does not require a small parameter for finding surge motion of TLP. In this paper, homotopy perturbation method (HPM) is used to solve a highly nonlinear differential equation of surge motion. Calculated responses by HPM are compared with those obtained from both linear and nonlinear... 

    Application of fast-SAGD in naturally fractured heavy oil reservoirs: A case study

    , Article SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings, Manama ; Volume 3 , March , 2013 , Pages 1946-1953 ; 9781627482851 (ISBN) Hemmati Sarapardeh, A ; Hashemi Kiasari, H ; Alizadeh, N ; Mighani, S ; Kamari, A ; Baker Hughes ; Sharif University of Technology
    2013
    Abstract
    Steam injection process has been considered for a long time as an effective method to exploit heavy oil resources. Over the last decades, Steam Assisted Gravity Drainage (SAGD) has been proved as one of the best steam injection methods for recovery of unconventional oil resources. Recently, Fast-SAGD, a modification of the SAGD process, makes use of additional single horizontal wells alongside the SAGD well pair to expand the steam chamber laterally. This method uses fewer wells and reduces the operational cost compared to a SAGD operation requiring paired parallel wells one above the other. The efficiency of this new method in naturally fractured reservoir is not well understood.... 

    Application of multi-criterion robust optimization in water-flooding of oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 109 , September , 2013 , Pages 1-11 ; 09204105 (ISSN) Yasari, E ; Pishvaie, M. R ; Khorasheh, F ; Salahshoor, K ; Kharrat, R ; Sharif University of Technology
    2013
    Abstract
    Most of the reported robust and non-robust optimization works are formulated based on a single-objective optimization, commonly in terms of net present value. However, variation of economical parameters such as oil price and costs forces such high computational optimization works to regenerate their optimum water injection policies. Furthermore, dynamic optimization strategies of water-flooding often lack robustness to geological uncertainties. This paper presents a multi-objective while robust optimization methodology by incorporating three dedicated objective functions. The goal is to determine optimized and robust water injection policies for all injection wells. It focuses on reducing... 

    Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir

    , Article Applied Soft Computing Journal ; Volume 13, Issue 2 , February , 2013 , Pages 1085-1098 ; 15684946 (ISSN) Ahmadi, M. A ; Ebadi, M ; Shokrollahi, A ; Majidi, S. M. J ; Sharif University of Technology
    2013
    Abstract
    Multiphase flow meters (MPFMs) are utilized to provide quick and accurate well test data in numerous numbers of oil production applications like those in remote or unmanned locations topside exploitations that minimize platform space and subsea applications. Flow rates of phases (oil, gas and water) are most important parameter which is detected by MPFMs. Conventional MPFM data collecting is done in long periods; because of radioactive sources usage as detector and unmanned location due to wells far distance. In this paper, based on a real case of MPFM, a new method for oil rate prediction of wells base on Fuzzy logic, Artificial Neural Networks (ANN) and Imperialist Competitive Algorithm is... 

    Experimental and numerical investigation of polymer flooding in fractured heavy oil five-spot systems

    , Article Journal of Petroleum Science and Engineering ; Volume 108 , 2013 , Pages 370-382 ; 09204105 (ISSN) Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    2013
    Abstract
    Microscopic and macroscopic displacements of polymer flooding to heavy oil at various levels of salinity and connate water saturation have been investigated. Both oil-wet and water-wet conditions in fractured five-spot micromodel systems, initially saturated with the heavy crude oil are utilized. The primary contribution is to examine the role of salinity, wettability, connate water, and fracture geometry in the recovery efficiency of the system. The microscopic results revealed that the increase in the connate water saturation decreases the oil recovery, independent of the wettability conditions. Moreover, the increase in salinity of the injected fluids lowers the recovery efficiency due to...