Loading...
Search for: optimal-design
0.01 seconds
Total 86 records

    A low-power and SEU-tolerant switch architecture for network on chips

    , Article 13th Pacific Rim International Symposium on Dependable Computing, PRDC 2007, Melbourne, VIC, 17 December 2007 through 19 December 2007 ; 2007 , Pages 264-267 ; 0769530540 (ISBN) ; 9780769530543 (ISBN) Patooghy, A ; Fazeli, M ; Miremadi, S. G ; Sharif University of Technology
    2007
    Abstract
    High reliability, high performance, low power consumption are the main objectives in the design of NoCs. These three design objectives are mostly conflicting and should be considered simultaneously in order to have an optimal design. This paper proposes a method based on duplicating the virtual channels of each NoC node as well as parity codes to prevent SEUs from producing erroneous data. The method is compared with two widely used SEU-tolerant methods i.e., the Switch to Switch and the End to End flow control methods, in terms of reliability, power consumption and performance. A flit level VHDL-based simulator and Synopsys Power Compiler tool have been used to extract experimental results.... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm

    , Article Journal of Heat Transfer ; Volume 133, Issue 2 , Nov , 2011 ; 00221481 (ISSN) Ahmadi, P ; Hajabdollahi, H ; Dincer, I ; Sharif University of Technology
    2011
    Abstract
    In the present work, a thermal modeling is conducted for optimal design of compact heat exchangers in order to minimize cost and entropy generation. In this regard, an εNTU method is applied for estimation of the heat exchanger pressure drop, as well as effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length, and hot stream flow length are considered as six decision variables. Fast and elitist nondominated sorting genetic algorithm (i.e., nondominated sorting genetic algorithm II) is applied to minimize the entropy generation units and the total annual cost (sum of initial investment and operating and maintenance costs) simultaneously. The results for... 

    Design Optimization of a Ladder Secondary Single-Sided Linear Induction Motor for Improved Performance

    , Article IEEE Transactions on Energy Conversion ; Volume 30, Issue 4 , 2015 , Pages 1595-1603 ; 08858969 (ISSN) Ravanji, M. H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Abstract
    In this paper, design and optimization of a ladder-type single-sided linear induction motor (Ladder SLIM) for machine tool applications is investigated. High-speed linear induction machines suffer from the end-effect phenomenon, which can reduce the thrust and result in declined output characteristics. Although it is common to consider this phenomenon in high-speed applications, it is essential to take it into account in the design and analysis of low-speed low-air-gap linear machines. In addition, Ladder SLIMs have significant flux density ripples, and using skewed bars for secondary of the machine is a common solution for it. Therefore, providing required equations, an algorithm for... 

    Optimal riser design in sand casting process by topology optimization with SIMP method I: poisson approximation of nonlinear heat transfer equation

    , Article Structural and Multidisciplinary Optimization ; Volume 36, Issue 2 , 25 January , 2008 , Pages 193-202 ; 1615147X (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    The optimal design of a casting feeding system is considered. The problem is formulated as the volume constrained topology optimization and is solved with the finite element analysis, explicit design sensitivity, and numerical optimization. In contrast to the traditional topology optimization where the objective function is defined on the design space, in the presented method, the design space is a subset of the complement of the objective function space. To accelerate optimization procedure, the nonlinear unsteady heat transfer equation is approximated with a Poisson-like equation. The feasibility of the presented method is supported with illustrative examples. © 2007 Springer-Verlag  

    Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging

    , Article Journal of Physical Chemistry B ; Volume 112, Issue 46 , 2008 , Pages 14470-14481 ; 15206106 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    American Chemical Society  2008
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution and stabilized by polyvinyl alcohol (PVA) were synthesized. The particles were prepared by a coprecipitation technique using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Using a design of experiments (DOE) approach, the effect of different synthesis parameters (stirring rate and base molarity) on the structure, morphology, saturation magnetization, purity, size, and size distribution of the synthesized magnetite nanoparticles was studied by various analysis techniques including X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC)...