Loading...
Search for: optimum-conditions
0.007 seconds

    Characterization of nanocrystalline CuCo2O4 spinel prepared by sol–gel technique applicable to the SOFC interconnect coating

    , Article Applied Physics A: Materials Science and Processing ; Volume 119, Issue 2 , May , 2015 , Pages 727-734 ; 09478396 (ISSN) Paknahad, P ; Askari, M ; Ghorbanzadeh, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    CuCo2O4 spinel nanopowders were synthesized by sol–gel method. The optimal values of pH and molar ratio of citric acid to metal ions (RC), and the influence of the calcination temperature and time were investigated. As-prepared materials were characterized by XRD, TGA, DSC, FE-SEM and electrical and coefficient of thermal expansion (CTE) measurements. It was found that pH = 4.5 and RC = 1 are the optimum conditions to produce pure CuCo2O4 nanopowders. The electrical conductivity was increased remarkably from 15.2 to 27.5 S cm−1 with an increase in temperature from 500 to 800 °C. Over the temperature range of 25–800 °C, the CTE of... 

    Simultaneous colorimetric determination of dopamine and ascorbic acid based on the surface plasmon resonance band of colloidal silver nanoparticles using artificial neural networks

    , Article Analytical Methods ; Volume 2, Issue 9 , 2010 , Pages 1263-1269 ; 17599660 (ISSN) Hormozi Nezhad, M. R ; Tashkhourian, J ; Khodaveisi, J ; Khoshi, M. R ; Sharif University of Technology
    2010
    Abstract
    A new method for simultaneous determination of dopamine (DA) and ascorbic acid (ASC) is proposed. The method is based on the reaction of dopamine and ascorbic acid with the oxidizing agent (silver nitrate) in the presence of PVP (as a stabilizer) and the formation of silver nanoparticles in a slightly basic medium. Spectrophotometry is used to monitor the changes of the surface plasmon resonance (SPR) band at a maximum wavelength of silver nanoparticles (440 nm) vs. time. Three-layered feed-forward artificial neural networks (ANN) trained by back propagation learning algorithm is used to model the relationship between absorbance and concentration to quantify analyte in mixtures under optimum... 

    Investigation and optimization of SDS and key parameters effect on the nickel electroless coatings properties by Taguchi method

    , Article Journal of Coatings Technology Research ; Volume 7, Issue 5 , 2010 , Pages 547-555 ; 15470091 (ISSN) Farzaneh, A ; Ehteshamzadeh, M ; Ghorbani, M ; Vazifeh Mehrabani, J ; Sharif University of Technology
    2010
    Abstract
    In this research, the influence of anionic surfactant sodium dodecyl sulfate (SDS), pH, substrate finishing, and annealing temperature on the surface morphology and hardness of the electroless nickel phosphorus (ENi-P) coatings were studied. Taguchi's experimental design method was used. Parameters selected in three levels and L9 from orthogonal robust array design were employed. Surface roughnesses of the deposits were measured using a stylus instrument. Scanning electron microscope and x-ray diffraction analysis were implemented to study surface morphologies and phase composition, respectively. Microhardness of the ENi-P deposits was measured using a microhardness tester at three trials... 

    Towards obtaining more information from gas chromatography-mass spectrometric data of essential oils: An overview of mean field independent component analysis

    , Article Journal of Chromatography A ; Volume 1217, Issue 29 , 2010 , Pages 4850-4861 ; 00219673 (ISSN) Jalali Heravi, M ; Parastar, H ; Sereshti, H ; Sharif University of Technology
    2010
    Abstract
    Mean field independent component analysis (MF-ICA) along with other chemometric techniques was proposed for obtaining more information from multi-component gas chromatographic-mass spectrometric (GC-MS) signals of essential oils (mandarin and lemon as examples). Using these techniques, some fundamental problems during the GC-MS analysis of essential oils such as varying baseline, presence of different types of noise and co-elution have been solved. The parameters affecting MF-ICA algorithm were screened using a 25 factorial design. The optimum conditions for MF-ICA algorithm were followed by deconvolution of complex GC-MS peak clusters. The number of independent components (ICs) (chemical... 

    Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase

    , Article International Biodeterioration and Biodegradation ; Volume 64, Issue 3 , 2010 , Pages 245-252 ; 09648305 (ISSN) Yousefi, V ; Kariminia, H. R ; Sharif University of Technology
    2010
    Abstract
    Enzymatic decolorization of the monoazo dye, acid orange 7 (AO7) by the fungal peroxidase from Coprinus cinereus NBRC 30628 is a complex system, which is greatly affected by temperature, pH, enzyme activity and the concentrations of H2O2 and dye concentration. The study of these factors and investigating the combined interactions between them by applying one-factor-at-a-time (OFAT) method and two other statistical methods including 2-factorial method and response surface methodology (RSM) were aimed in this work. Through OFAT analysis the optimized conditions were a temperature of 25 °C, pH 9.0 with H2O2 concentration of about 3.9 mM and AO7 concentration of 40 mg/l. A complete... 

    Optimization of parameters for synthesis of mfi nanoparticles by taguchi robust design

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , 2010 , Pages 902-910 ; 09307516 (ISSN) Torkman, R ; Soltanieh, M ; Kazemian, H ; Sharif University of Technology
    2010
    Abstract
    MFI-type zeolite was successfully synthesized by hydrothermal crystallization of clear synthesis mixtures. A statistical experimental design method (the Taguchi method with an L8 orthogonal array) was implemented to optimize the experimental conditions for the preparation of MFI nanocrystals with respect to particle size and distribution as the desirable properties. In the Taguchi experimental design, crystallization temperature, water content, template/silica molar ratio, aluminum content, as well as the presence of alkaline cations were chosen as significant parameters affecting the properties. It was shown that water and aluminum content of the synthesis solution were the most important... 

    Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode

    , Article Electrochimica Acta ; Volume 55, Issue 3 , 2010 , Pages 666-672 ; 00134686 (ISSN) Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) modified with thionine immobilized on multi-walled carbon nanotube (MWCNT), was prepared for simultaneous determination of ascorbic acid (AA) and acetaminophen (AC) in the presence of isoniazid (INZ). The electrochemical response characteristics of the modified electrode toward AA, AC and INZ were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic role for the electro-oxidation of AA and AC, leading to a remarkable peak resolution (∼303 mV) for two compounds. On the other hand, the presence of INZ, which is considered as important drug interference for AC, does not affect the voltammetric responses... 

    Simulation of three different double-fiber probes for reflection sensing

    , Article Journal of Applied Sciences ; Volume 10, Issue 1 , 2010 , Pages 20-28 ; 18125654 (ISSN) Jafari, R ; Golnabi, H ; Sharif University of Technology
    Abstract
    In this study simulation results for three double-fiber optical designs for the reflection measurements are reported. Modeling is perused for three cases namely Equal Fibers (EF), transmitter fiber shorter (TS) and receiver fiber shorter (RS) designs. By proper modeling and written programs the operations of such symmetric double-fiber probes are simulated and the role of different crucial parameters such as fiber-to-fiber distance (t), fiber core radius (r) and fiber Numerical Aperture (NA) are investigated. In the second study simulation results for the transmitter fiber shorter and receiver fiber shorter designs are investigated for different fiber length differences (w). Finally... 

    Copper recovery from reverberatory furnace flue dust

    , Article International Journal of Mineral Processing ; Volume 157 , 2016 , Pages 205-209 ; 03017516 (ISSN) Mohagheghi, M ; Askari, M ; Sharif University of Technology
    Elsevier, B. V  2016
    Abstract
    In this study, leaching of reverberatory furnace dust at Sarcheshmeh was investigated in H2SO4-O3 medium. Response surface methodology based on central composite face-centered design (RSM-CCF) was applied to optimize the operating parameters. The optimal conditions to achieve the principle objectives of maximizing copper dissolution and minimizing iron dissolution from dust were identified to be a temperature of 30 °C, a leaching time of 3 h, an initial pH of 0.5, a pulp density of 20%, and an ozone flow rate of 1 g/h. Under the optimum conditions, the copper and iron concentrations in the leaching solution were found to be 27.11 and 0.90 g/L, respectively. The results showed that selective... 

    Newly developed technique to eliminate hot cracking with electromagnetic vibration for joining of 2024 aluminum alloy

    , Article Metallography, Microstructure, and Analysis ; Volume 5, Issue 1 , 2016 , Pages 7-15 ; 21929262 (ISSN) Nikzad, S ; Ashuri, H ; Kokabi, A. H ; Shafizadeh, M ; Ferasat, K ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    In this study, the effect of electromagnetic vibration on joining of aluminum alloy 2024 was investigated. Simultaneously applying a static magnetic field and alternating electrical current passing through a conductor produced electromagnetic vibration. Joining was accomplished using constant electric current (60 A) and the magnetic flux of 75, 110, and 145 mT in the presence of argon gas. After joining, samples were cooled first by argon gas as a shielding gas and then by water. The microstructure and mechanical properties of the welded samples were studied for different electromagnetic vibrations. The optimum microstructure and mechanical properties were obtained when applied... 

    Immobilized copper(II) on nitrogen-rich polymer-entrapped Fe3O4 nanoparticles: A highly loaded and magnetically recoverable catalyst for aqueous click chemistry

    , Article Applied Organometallic Chemistry ; Volume 30, Issue 2 , 2016 , Pages 73-80 ; 02682605 (ISSN) Zohreh, N ; Hosseini, S. H ; Pour Javadi, A ; Bennett, C ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    A heterogeneous magnetic copper catalyst was prepared via anchoring of copper sulfate onto multi-layered poly(2-dimethylaminoethyl acrylamide)-coated magnetic nanoparticles and was characterized using various techniques. The catalyst was found to be active, effective and selective for one-pot three-component reaction of alkyl halide, sodium azide and alkyne, known as copper-catalyzed click synthesis of 1,2,3-triazoles. As little as 0.3 mol% of catalyst was found to be effective under the optimum conditions. The catalyst could also be recycled and reused up to seven times without significant loss of activity. Thermal stability, high loading level of copper on catalyst, broad diversity of... 

    Surface and mechanical properties of modified porous titanium scaffold

    , Article Surface and Coatings Technology ; Volume 315 , 2017 , Pages 61-66 ; 02578972 (ISSN) Khodaei, M ; Valanezhad, A ; Watanabe, I ; Yousefi, R ; Sharif University of Technology
    Abstract
    The bioinertness makes surface treatments essential to improve the bioactivity of porous titanium scaffold, and surface treatment might affect their mechanical properties. So finding an optimum condition lying between bioactivity and mechanical properties seems to be curial. In this research, the effect of the time of the thermal oxidation at 600 °C on apatite formation and mechanical properties of the porous titanium scaffold was studied. The results of thin film X-ray diffraction and Raman spectroscopy indicated that the surface of heat treated samples up to 480 min was mainly covered by rutile. Also, wettability measurement and in vitro apatite formation ability assessment indicated that... 

    Experimental and simulation investigation on separation of binary hydrocarbon mixture by thermogravitational column

    , Article Journal of Molecular Liquids ; Volume 268 , 2018 , Pages 791-806 ; 01677322 (ISSN) Hashemipour, N ; Karimi Sabet, J ; Motahari, K ; Mahruz Monfared, S ; Amini, Y ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this article, experimental and numerical investigations are performed to study a thermogravitational column (TGC) for the separation of toluene/n-heptane mixture. This research has tried to determine the main significant parameters and their effects on the performance of the process. In experimental examinations, the influence of the main parameters such as feed flow rate, cut and temperature gradient on the performance of the TGC efficiency is studied. In addition, computational fluid dynamics is used to simulate the separation process in this review. The response surface methodology (RSM) was also applied to minimize the number of runs and investigate the optimum operating conditions.... 

    Performance improvement of a supersonic external compression inlet by heat source addition

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 267-274 ; 2010376X (ISSN) Soltani, M. R ; Farahani, M ; Sepahi Younsi, J ; Sharif University of Technology
    2009
    Abstract
    Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the... 

    Novel superabsorbent hydrogel based on natural hybrid backbone: optimized synthesis and its swelling behavior

    , Article Bulletin of the Korean Chemical Society ; Volume 30, Issue 11 , 2009 , Pages 2680-2686 ; 02532964 (ISSN) Pourjavadi, A ; Soleyman, R ; Bardajee Rezanejade, G ; Ghavami, S ; Sharif University of Technology
    2009
    Abstract
    The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in... 

    Irradiation synthesis of biopolymer-based superabsorbent hydrogel: optimization using the taguchi method and investigation of its swelling behavior

    , Article Advances in Polymer Technology ; Volume 28, Issue 2 , 2009 , Pages 131-140 ; 07306679 (ISSN) Rezanejade Bardajee, G ; Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    2009
    Abstract
    In this report, the synthesis of a novel superabsorbent hydrogel via γ-irradiation graft copolymerization of acrylamide onto sodium alginate and kappa-carrageenan hybrid backbones in a homogeneous solution is described. The Taguchi method was used as a powerful experimental design tool for synthesis optimization. A series of superabsorbent hydrogels was synthesized by proposed conditions of Qualitek-4 software. Considering the results of nine trials according to analysis of variance, optimum conditions were proposed. The swelling behavior of optimum superabsorbent hydrogels was studied in various solutions, with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in... 

    Effective factors in the treatment of kerosene-water emulsion by using UF membranes

    , Article Journal of Hazardous Materials ; Volume 161, Issue 2-3 , 2009 , Pages 1216-1224 ; 03043894 (ISSN) Rezvanpour, A ; Roostaazad, R ; Hesampour, M ; Nyström, M ; Ghotbi, C ; Sharif University of Technology
    2009
    Abstract
    The effects of different parameters including membrane type (regenerated cellulose and polysulphone), transmembrane pressure (TMP), the content of oil in the feed, the flow velocity of the feed and pH on the ultrafiltration of an emulsion of kerosene in water were studied. It was found that the important factors affecting ultrafiltration were, in order, membrane type, pressure and oil concentration. The greatest flux at the optimum conditions here of 3 bar, an oil content of 3% (v/v) and with membrane type C30F was predicted as 108 L/(m2 h) that was within the range of the confidence limit of the measured value of 106 L/(m2 h). The normalised FTIR results of the virgin cellulosic membranes... 

    Design and operation of a simple beam shaping system

    , Article Journal of Applied Sciences ; Volume 9, Issue 18 , 2009 , Pages 3350-3356 ; 18125654 (ISSN) Haghighatzadeh, A ; Golnabi, H ; Shakouri, M ; Sharif University of Technology
    2009
    Abstract
    Design and performance of a beam shaping device based on a simple flexible plastic fiber-bundle stripe and a prism duct is described in this study. Such a system offers practical means to modify and change the output beam shape and also provides quantitative information concerning the transmitted power. It is possible to measure transmitted power signal by using a precise photodetector and also analyze beam images taken by a digital camera. The photograph picture of the illuminating LED beam just at its output point shows a circular shape with a radius of about 4 mm and the fiber-bundle output beam is rectangular shape with a dimension of 22.5×2 mm. A regular duct is tested in this study and... 

    Synthesis and swelling behavior of a new superabsorbent hydrogel network based on polyacrylamide grafted onto salep

    , Article Journal of Applied Polymer Science ; Volume 112, Issue 5 , 2009 , Pages 2625-2633 ; 00218995 (ISSN) Pourjavadi, A ; Rezanejade Bardajee, G ; Soleyman, R ; Sharif University of Technology
    2009
    Abstract
    Synthesis and swelling behavior of a new superabsorbent hydrogel based on natural salep grafted with Polyacrylamide is described. The new superabsorbent hydrogel biopolymer was synthesized via radical crosslink-ing and graft copolymerization of acrylamide monomer onto salep backbones. Regarding to the water absorption of hydrogel, the best synthesis condition is reported. FTIR spectroscopy and thermogravimetric analysis were used to confirm the structure of the final product and a mechanism for superabsorbent hydrogel formation was also suggested. After preparing the desired hydrogels based on optimum condition, several factors affecting the swelling behavior of hydrogel including pH of... 

    Investigation of optimum condition in oxygen gas-assisted laser cutting

    , Article Optics and Laser Technology ; Volume 41, Issue 4 , 2009 , Pages 454-460 ; 00303992 (ISSN) Golnabi, H ; Bahar, M ; Sharif University of Technology
    2009
    Abstract
    Laser cutting characteristics including power level and cutting gas pressure are investigated in order to obtain an optimum kerf width. The kerf width is investigated for a laser power range of 50-170 W and a gas pressure of 1-6 bar for steel and mild steel materials. Variation of sample thickness, material type, gas pressure and laser power on the average cut width and slot quality are investigated. Optimum conditions for the steel and mild steel materials with a thickness range of 1-2 mm are obtained. The optimum condition for the steel cutting results in a minimum average kerf width of 0.2 mm at a laser power of 67 W, cutting rate of 7.1 mm/s and an oxygen pressure of 4 bar. A similar...